

REPORT ON EMERGING TECHNOLOGY

Confocal laser endomicroscopy

The American Society for Gastrointestinal Endoscopy (ASGE) Technology Committee provides reviews of new or emerging endoscopic technologies that have the potential to have an impact on the practice of GI endoscopy. Evidence-based methodology is used, with a MEDLINE literature search to identify pertinent preclinical and clinical studies on the topic and a MAUDE (U.S. Food and Drug Administration Center for Devices and Radiological Health) database search to identify the reported complications of a given technology. Both are supplemented by accessing the "related articles" feature of PubMed and by scrutinizing pertinent references cited by the identified studies. Controlled clinical trials are emphasized, but in many cases, data from randomized, controlled trials are lacking. In such cases, large case series, preliminary clinical studies, and expert opinions are used. Technical data are gathered from traditional and Web-based publications, proprietary publications, and informal communications with pertinent vendors. For this review, the MEDLINE database was searched through January 2009 using the keywords "confocal," "confocal endoscopy," and "confocal laser endomicroscopy."

Reports on Emerging Technologies are drafted by 1 or 2 members of the ASGE Technology Committee, reviewed and edited by the committee as a whole, and approved by the Governing Board of the ASGE. These reports are scientific reviews provided solely for educational and informational purposes. Reports on Emerging Technologies are not rules and should not be construed as establishing a legal standard of care or as encouraging, advocating, requiring, or discouraging any particular treatment or payment for such treatment.

EMERGING TECHNOLOGY

Confocal laser endomicroscopy is a new endoscopic modality developed to obtain very high-resolution images of the mucosal layer of the GI tract. Confocal laser endomicroscopy is based on tissue illumination with a low-power laser with subsequent detection of the fluorescence light reflected from the tissue through a pinhole (Fig. 1). The

Copyright © 2009 by the American Society for Gastrointestinal Endoscopy 0016-5107/\$36.00 doi:10.1016/j.gie.2009.04.002

term *confocal* refers to the alignment of both illumination and collection systems in the same focal plane.^{2,3} The laser light is focused at a selected depth in the tissue of interest and reflected light is then refocused onto the detection system by the same lens. Only returning light refocused through the pinhole is detected. The light reflected and scattered at other geometric angles from the illuminated object or refocused out of plane with the pinhole is excluded from detection. This dramatically increases the spatial resolution of confocal endomicroscopy, thus providing an "optical biopsy"—histological examination of the superficial layer of the GI tract.^{4,5}

Confocal imaging can be based on tissue reflectance or tissue fluorescence.^{6,7} The confocal devices based on tissue reflectance do not require any contrast agents, but available prototypes have had numerous technical problems and relatively low resolution, which significantly compromise in vivo imaging and clinical utility.⁶⁻⁹

In contrast, confocal endomicroscopy based on tissue fluorescence uses local and/or intravenous contrast agents and generates high-quality images comparable with traditional histological examination.^{5,10} Most clinical studies reported to date used a confocal fluorescence microscope integrated into the distal tip of a conventional upper endoscope (EG-3870CIK; Pentax, Tokyo, Japan) or colonoscope (EC-3870CILK; Pentax). A smaller number of studies used a dedicated confocal miniprobe with laser microscope (Mauna Kea Technologies, Paris, France) inserted through the accessory channel of a traditional endoscope. These instruments have been cleared by the U.S. Food and Drug Administration, and all have different depths of imaging, field of views, and lateral resolutions.

The latest model of Cellvizio confocal miniprobes (Mauna Kea Technologies) created for GI tract applications include CholangioFlex, GastroFlex (ColoFlex), and GastroFlex (ColoFlex) (ColoFlex (ColoFlex)). CholangioFlex probes designed for use during ERCP require an endoscope accessory channel of at least 1.2 mm, whereas the other probes, which are designed for use in EGD and colonoscopy, require a channel larger than 2.8 mm. All probes generate dynamic (12 frames per second) images. The depth of imaging for CholangioFlex probes is 40 to 70 μm, 70 to 130 μm for GastroFlex (ColoFlex), and 55 to 65 μm for GastroFlex (ColoFlex) (ColoFlex). The maximal field of view for CholangioFlex probes is 325 μm, 600 μm for GastroFlex (ColoFlex), and 240 μm for GastroFlex (ColoFlex). The lateral resolution for CholangioFlex

and for GastroFlex (ColoFlex) probes is 3.5 μ m, and the lateral resolution for GastroFlex^{UHD} (ColoFlex^{UHD}) is 1 μ m. ¹¹⁻¹³ Confocal probes are reusable and expected to last approximately 20 studies.

The confocal microscope integrated into the conventional endoscope collects images at a scan rate of 1.6 frames per second (1024 \times 512 pixels) or 0.8 frames per second (1024 \times 1024 pixels) with an adjustable depth of scanning ranging from 0 to 250 μm , a field of view of 475 \times 475 μm , a lateral resolution of 0.7 μm , and an axial resolution of 7 μm . $^{14-19}$

The fluorescent contrasts for confocal endomicroscopy can be administered intravenously (fluorescein [Pharmalab, Lane Cove, New South Wales, Australia]) or topically (acriflavin [Sigma Pharmaceuticals, Clayton, Victoria, Australia], tetracycline, cresyl violet [AnaSpec, Inc, San Jose, Calif]) through a spraying catheter. ^{10,20} Intravenously delivered fluorescein distributes throughout the extracellular matrix of the surface epithelium and lamina propria but does not stain cell nuclei. ² Topically administered acriflavin stains cell nuclei of the surface epithelium but does not penetrate to deeper layers of the GI mucosa. ² Acriflavin is a mutagenic dye and a potential human carcinogen, which will likely limit its clinical utility. ^{21,22}

Fluorescein is usually administered within 5 minutes of imaging; however, the dose and timing of contrast administration have not been standardized. After the contrast administration, the tip of the confocal endomicroscope or miniprobe is positioned in gentle contact with the area of interest to obtain high-resolution confocal images. Accumulated images can be saved for postprocedural analysis.

POTENTIAL APPLICATIONS

Numerous studies have addressed the clinical applications of confocal endomicroscopy. The first prospective human trial evaluated confocal endomicroscopy during screening for colorectal cancer in 69 patients. ¹⁶ The presence of neoplastic changes in a polyp was predicted with high accuracy (97.4% sensitivity, 99.4% specificity, 99.2% accuracy). ¹⁶

Another promising approach for the early detection of colonic adenomas, colorectal cancer, and other epithelial malignancies is the development of fluorescein-conjugated peptides that target dysplastic colonic cells. In one study, confocal miniprobes were used to image topically administered peptide in patients undergoing colonoscopy. The fluorescein-conjugated peptide helped to identify dysplastic colonocytes with 81% sensitivity and 82% specificity.²³

In a large randomized, controlled study of 161 patients with long-term ulcerative colitis referred for a surveillance colonoscopy, chromoscopy with supplemental confocal

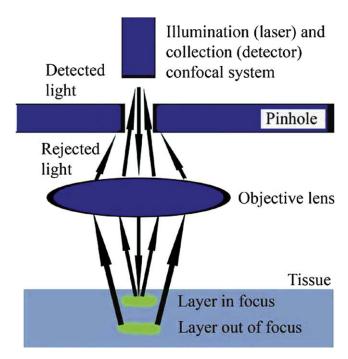


Figure 1. Schematic of confocal endomicroscopy principles.

endomicroscopy resulted in a 4.75-fold higher yield of neoplastic lesions relative to conventional colonoscopy (P = .005). In addition, 50% fewer biopsy specimens (P = .008) were required. Endomicroscopy was also highly accurate in predicting neoplasia (94.7% sensitivity, 98.3% specificity, 97.8% accuracy).

In patients with Barrett's esophagus, confocal endomicroscopy can distinguish between different types of epithelial cells and detect dysplasia and neoplasia. ²⁴⁻²⁶ Surveillance endoscopy in 63 patients with Barrett's esophagus provided in vivo histology of the mucosal layer and was able to diagnose Barrett's epithelium and Barrett's-associated neoplastic changes with 98.1% and 92.9% sensitivity and 94.1% and 98.4% specificity, respectively (96.8% and 97.4% accuracy, respectively). ²⁵

Confocal endomicroscopy in the stomach allows direct in vivo identification of *Helicobacter pylori* infection and good visualization of normal and pathologic gastric pit patterns, making it a potentially useful tool for diagnosis of gastric cancer and precancerous conditions.^{3,14,27}

In patients with suspected celiac disease, confocal endomicroscopy can demonstrate villous atrophy and an increased number of intraepithelial lymphocytes, enabling immediate in vivo diagnosis of celiac disease. ^{3,28,29}

Confocal endomicroscopy can also be helpful for the diagnosis of microscopic colitis. In patients with collagenous colitis, it allows in vivo direct visualization of collagenous bands under the epithelial layer of the colon, and in patients with lymphocytic colitis, it can demonstrate crypt distortion and an increased distance between the colonic

crypts caused by increased mononuclear infiltration in the lamina propria. ^{30,31}

AREAS FOR FUTURE RESEARCH

Currently available devices for confocal endomicroscopy have a very narrow field of view and allow only visualization of the superficial mucosal layer of the GI tract. Further technological developments are needed to enlarge the field of view, which will facilitate the use of confocal endomicroscopy for cancer screening and surveillance. Increased depth of penetration is also needed to assess depth of invasion during cancer staging. ^{7,18}

Development of organ- and tissue-specific contrast agents will further expand the indications for confocal endomicroscopy, which can potentially be used to assess extraluminal (eg, biliary, pancreatic, intraperitoneal) pathology.¹

Confocal endomicroscopy is an examiner-dependent technology. Interobserver and intraobserver variability of this technique has not been adequately studied. Finally, adequate histopathology training is needed for interpretation of confocal endomicroscopy images by gastroenterologists performing this procedure.

The incremental clinical benefit and cost-effectiveness of this imaging modality relative to conventional histopathology examination require further study.

SUMMARY

In recent years, confocal laser endomicroscopy rapidly moved from the bench to the bedside. It is being analyzed as a potentially valuable addition to conventional endoscopy as a means of in vivo optical biopsy enabling real-time histological examination of the superficial layer of the GI tract. How this will affect the practice of screening, surveillance, and early diagnosis of benign, premalignant, and malignant lesions of the GI tract requires further study.

REFERENCES

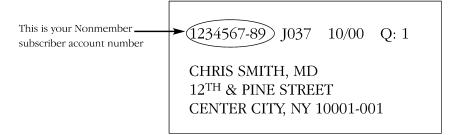
- 1. Wang TD. Confocal microscopy from the bench to the bedside. Gastrointest Endosc 2005;62:696-7.
- Polglase AL, McLaren WJ, Skinner SA, et al. A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-Gl tract. Gastrointest Endosc 2005;62:686-95.
- Kiesslich R, Goetz M, Neurath MF. Confocal laser endomicroscopy for gastrointestinal diseases. Gastrointest Endosc Clin N Am 2008;18: 451-66.
- 4. Wang TD, Van Dam J. Optical biopsy: a new frontier in endoscopic detection and diagnosis. Clin Gastroenterol Hepatol 2004;2:744-53.
- Aisenberg J. Gastrointestinal endoscopy nears "the molecular era." Gastrointest Endosc 2008;68:528-30.

- Yoshida S, Tanaka S, Hirata M, et al. Optical biopsy of GI lesions by reflectance-type laser-scanning confocal microscopy. Gastrointest Endosc 2007;66:144-9.
- Kiesslich R, Neurath MF. Endomicroscopy is born—do we still need the pathologist? Gastrointest Endosc 2007;66:150-3.
- 8. Inoue H, Cho JY, Satodate H, et al. Development of virtual histology and virtual biopsy using laser-scanning confocal microscopy. Scand J Gastroenterol 2003;237:37-9.
- Sakashita M, Inoue H, Kashida H, et al. Virtual histology of colorectal lesions using laser-scanning confocal microscopy. Endoscopy 2003; 35:1033-8.
- 10. Kiesslich R, Neurath MF. Chromoendoscopy and other novel imaging techniques. Gastroenterol Clin North Am 2006;35:605-19.
- Becker V, Vercauteren T, von Weyhern CH, et al. High-resolution miniprobe-based confocal microscopy in combination with video mosaicing (with video). Gastrointest Endosc 2007;66:1001-7.
- von Delius S, Feussner H, Wilhelm D, et al. Transgastric in vivo histology in the peritoneal cavity using miniprobe-based confocal fluorescence microscopy in an acute porcine model. Endoscopy 2007;39: 407-11.
- Cellvizio[®]: a unique probe-based confocal laser endomicroscopy system Available at: http://wwwmaunakeatechcom/products/cellvizio. Accessed February 22, 2009.
- 14. Kiesslich R, Goetz M, Burg J, et al. Diagnosing Helicobacter pylori in vivo by confocal laser endoscopy. Gastroenterology 2005;128:2119-23.
- Goetz M, Hoffman A, Galle PR, et al. Confocal laser endoscopy: new approach to the early diagnosis of tumors of the esophagus and stomach. Future Oncol 2006;2:469-76.
- Kiesslich R, Burg J, Vieth M, et al. Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo. Gastroenterology 2004;127:706-13.
- Kiesslich R, Goetz M, Vieth M, et al. Technology insight: confocal laser endoscopy for in vivo diagnosis of colorectal cancer. Nat Clin Pract Oncol 2007;4:480-90.
- Hurlstone DP, Kiesslich R, Thomson M, et al. Confocal chromoscopic endomicroscopy is superior to chromoscopy alone for the detection and characterisation of intraepithelial neoplasia in chronic ulcerative colitis. Gut 2008;57:196-204.
- Kiesslich R, Goetz M, Lammersdorf K, et al. Chromoscopy-guided endomicroscopy increases the diagnostic yield of intraepithelial neoplasia in ulcerative colitis. Gastroenterology 2007;132:874-82.
- Becker V, von Delius S, Bajbouj M, et al. Intravenous application of fluorescein for confocal laser scanning microscopy: evaluation of contrast dynamics and image quality with increasing injection-toimaging time. Gastrointest Endosc 2008;68:319-23.
- Burleson GR, Caulfield MJ, Pollard M. Ozonation of mutagenic and carcinogenic polyaromatic amines and polyaromatic hydrocarbons in water. Cancer Res 1979;39:2149-54.
- Seeley HW, VanDemark PJ, Lee JJ, editors. Microbes in action, 4th ed. New York: Macmillan; 1997.
- Hsiung PL, Hardy J, Friedland S, et al. Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy. Nat Med 2008;14:454-8.
- Sharma P, Bansal A. Toward better imaging of Barrett's esophagus see more, biopsy less!. Gastrointest Endosc 2006;64:188-92.
- 25. Kiesslich R, Gossner L, Goetz M, et al. In vivo histology of Barrett's esophagus and associated neoplasia by confocal laser endomicroscopy. Clin Gastroenterol Hepatol 2006;4:979-87.
- Leung KK, Maru D, Abraham S, et al. Optical EMR: confocal endomicroscopy-targeted EMR of focal high-grade dysplasia in Barrett's esophagus. Gastrointest Endosc 2009;69:170-2.
- Zhang JN, Li YQ, Zhao YA, et al. Classification of gastric pit patterns by confocal endomicroscopy. Gastrointest Endosc 2008;67: 843-53.
- Trovato C, Sonzogni A, Ravizza D, et al. Celiac disease: in vivo diagnosis by confocal endomicroscopy. Gastrointest Endosc 2007;65: 1096-9.

- Zambelli A, Villanacci V, Buscarini E, et al. Confocal laser endomicroscopy in celiac disease: description of findings in two cases. Endoscopy 2007;39:1018-20.
- 30. Kiesslich R, Hoffman A, Goetz M, et al. In vivo diagnosis of collagenous colitis by confocal endomicroscopy. Gut 2006;55:591-2.
- 31. Meining A, Schwendy S, Becker V, et al. In vivo histopathology of lymphocytic colitis. Gastrointest Endosc 2007;66:398-400.

Prepared by:
ASGE TECHNOLOGY COMMITTEE
Sergey V. Kantsevoy, MD, PhD
Douglas G. Adler, MD
Jason D. Conway, MD, MPH
David L. Diehl, MD
Francis A. Farraye, MD, MSc
Vivek Kaul, MD
Sripathi R. Kethu, MD
Richard S. Kwon, MD
Petar Mamula, MD, NASPGHAN representative

Sarah A. Rodriguez, MD


William M. Tierney, MD, Committee Chair
This document is a product of the ASGE Technology Committee. This
document was reviewed and approved by the governing board of the

Access to Gastrointestinal Endoscopy Online is reserved for all subscribers!

ASGE.

Full-text access to *Gastrointestinal Endoscopy Online* is available for all subscribers. ASGE MEMBER SUBSCRIBERS: To activate your individual online subscription, please visit http://www.asge.org and follow the instructions. NON-MEMBER SUBSCRIBERS: To activate your individual online subscription, please visit http://www.giejournal.org and follow the prompts to activate your *online access*. To activate your account, you will need your subscriber account/membership number, which you can find on your mailing label (*note*: the number of digits in your subscriber account number varies from 6 to 10 digits). See the example below in which the subscriber account number has been circled:

Sample mailing label

Personal subscriptions to *Gastrointestinal Endoscopy Online* are for individual use only and may not be transferred. Use of *Gastrointestinal Endoscopy Online* is subject to agreement to the terms and conditions as indicated online.