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Summary

In this review article, we discuss the model for end-stage liver disease (MELD) score and its dual purpose
in general and transplant hepatology. As the landscape of liver disease and transplantation has evolved
considerably since the advent of the MELD score, we summarise emerging concepts, methodologies, and
technologies that may improve mortality prognostication in the future. Finally, we explore how these
novel concepts and technologies may be incorporated into clinical practice.
© 2022 Published by Elsevier B.V. on behalf of European Association for the Study of the Liver.

Introduction

The deficit of available donor organs in relation to
the number of patients in need of liver trans-
plantation necessitates systems to allocate organs
in an efficient yet equitable manner. The current
principles of liver allocation in the United States,1

the Eurotransplant region,2,3 and elsewhere
include determination of priority through objective
and measurable medical criteria, ordered from
most to least medically urgent.1,4 Urgency has been
represented primarily by the model for end-stage
liver disease (MELD) score, rather than the Child-
Pugh score, to avoid subjective variables such as
ascites and encephalopathy and to expand the
scale (to reduce the number of candidates with
identical scores).5,6

The MELD score, which is comprised of serum
bilirubin, creatinine, and the international nor-
malised ratio, has since served a dual purpose in
general and transplant hepatology. It effectively
predicts short-term (e.g., over 90 days) mortality
among patients with chronic liver disease, thereby
providing clinicians with a critical tool to prog-
nosticate liver-related and waitlist mortality. It has
been used to determine medical urgency (and
hence priority) for liver transplant candidates since
2002 in the United States and 2006 in the Euro-
transplant region, making it an essential tool for
transparent and equitable organ allocation.7,8

The landscape of chronic liver disease and liver
transplantation has evolved considerably in the last
two decades. Both waitlist mortality prediction and
transplant organ allocation require ongoing re-
evaluation to ensure accurate prognostication and
appropriate distribution of donor organs. In 2016,
the MELD score was updated to include serum
sodium, an objective biomarker that is often a
surrogate indicator for ascites.9 A new update to
Journal of Hepatology 2022 vol. 76 j 13
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and recalibration of the MELD score, MELD 3.0, was
recently published with the inclusion of sex and
serum albumin.10 At the same time, a substantial
proportion of liver transplants are allocated by
MELD “exception”, representing indications where
the mortality risk and need for transplant are not
well-represented by the MELD score.11

In addition, emerging technologies, new meth-
odologies, and evolving conceptual frameworks for
liver disease may improve clinicians’ ability to
prognosticate and manage patients with end-stage
liver disease. In this article, we present emerging
tools and techniques “beyond MELD” for
improvement in liver allocation, prognostication,
and outcomes in patients with end-stage
liver disease.

Beyond MELD – for liver allocation
Improving the MELD score
Over the past two decades of MELD score-based
liver allocation, the demographics of chronic liver
disease and indications for liver transplantation
have changed dramatically worldwide. The wide-
spread availability of effective direct-acting anti-
viral therapy for hepatitis C and the increasing
prevalence of alcohol-associated liver disease and
non-alcoholic steatohepatitis has fundamentally
changed the population of patients awaiting liver
transplantation.11,12 Throughout these changes,
however, the MELD score has continued to provide
robust predictions of short-term waitlist mortality
that outperform most other clinical scoring sys-
tems, with c-statistics that exceed 0.80 in various
cohorts.9,10,13 Still, it has been perceived that the
predictive power of the MELD score may have
diminished in recent years.14,15 The MELD score
may not represent mortality risk as accurately for
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Key point

While the MELD score re-
mains a reliable indicator
of mortality risk in liver
disease, further refine-
ments, exception points,
and continuous distribu-
tion are required as we
move toward truly fair and
equitable organ allocation.
patients with some of the most severe clinical
complications of cirrhosis, such as acute-on-
chronic liver failure (ACLF), refractory ascites/he-
patic hydrothorax, recurrent variceal bleeding, and
hepatocellular carcinoma.14,16

In addition, the MELD score has historically
underpredicted mortality risks for women.17,18

This sex disparity is multifactorial but in part
stems from the reliance of the MELD score on the
measurement of serum creatinine, which can vary
by sex for the same degree of renal dysfunc-
tion.17,19,20 Women on average have lower muscle
mass compared to men, leading to systematic
underestimation of renal function by serum
creatinine.21 Alternatives to the creatinine
component of the MELD score have been pro-
posed, including MDRD (modification of diet in
renal disease),18,22 GRAIL (glomerular filtration
rate assessment in liver disease),23,24 and cystatin
C,25,26 but are still less-than-ideal owing to the
lack of improvement in model performance, in-
clusion of age and/or race-based equations, or
clinical availability (cystatin C) (Table 1). The most
recent iteration of the MELD score, MELD 3.0, in-
corporates sex as an independent variable to cor-
rect for the sex disparity due to creatinine, while
also updating coefficients, adding serum albumin
and adjusting the creatinine to a lower cap of 3.0
mg/dl.10 Other factors contributing to the sex
disparity, including anthropometric differences
and thus fewer opportunities for size-appropriate
organs or the allocation of exception points, may
require other types of adjustments to fully address
the differences in outcomes and access to trans-
plant between sexes.17,19,27,28

While the MELD score remains a reliable indi-
cator of mortality risk in liver disease, it can
certainly benefit from further refinement. In so
doing, the selection of variables should be carefully
considered. Older age, medical co-morbidities, or
certain aetiologies of liver disease may be associ-
ated with increased mortality risk, yet there is no
consensus that these variables should influence
waitlist priority or access to liver transplantation.
Race may also be predictive, but this variable in
clinical prediction scores can be problematic, as
racial differences among populations in large
datasets are often not genetic or biological, but
rather reflect socioeconomics and healthcare pol-
icy.29 Race adjustment in these situations, while
well-intentioned, can exacerbate inequity. Lastly,
variables should be objective, verifiable, and
readily available. Although addition of such vari-
ables may generate better prediction of waitlist
mortality, they are not necessarily appropriate for
use in organ allocation. Systems for organ distri-
bution also need to be interpretable and trans-
parent with regards to how changes of a specific
variable would impact allocation.
Journal of
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Emerging concepts to improve allocation
The rationale behind organ allocation systems is to
maximise the use of available organs and reduce
deaths on the waiting list. Organ allocation may be
driven by 3 important principles:
- Urgency – Allocation to the patient estimated to
have the shortest survival without a transplant.

- Utility – Allocation to the patient estimated to
have the longest post-transplant survival.

- Transplant benefit – Allocation based on the dif-
ference between the mean survival estimates
with and without a transplant.

In the past two decades, liver allocation in the
United States and parts of Europe has been based
almost entirely on the principle of urgency – in
other words, by risk of death as determined by the
MELD score.7,8 Although the Final Rule instituted
by the Department of Health and Human Services
in the United States also provides for consideration
of utility and survival benefit – to make the best
use of donated organs, to avoid wasting organs,
and to avoid futile transplants.1 However, accept-
able standards and thresholds for post-transplant
longevity and futility have been challenging to
define,30 and current models for post-transplant
survival do not perform well enough alone to be
used in allocation.31–33 Moreover, the net benefit of
liver transplant, defined by the difference between
survival with and without transplant, is largely
driven by waitlist mortality, where the candidates
with the highest MELD score gained the most life-
years from transplant.34,35

In many MELD-based liver allocation systems,
exception points grant waitlist priority and thus
access to transplant for patients whose mortality
risk and need for transplant is not well-
represented by the MELD score, the most com-
mon exception being for hepatocellular carci-
noma.36 Calibration of these exception points to
approximate the mortality risk and urgency for
transplant and to equitably allocate organs has
turned out to be a moving target as patient char-
acteristics and management of various conditions
have shifted over time. Ensuring equitable alloca-
tion for this population may require additional
solutions, including integration of transplant
benefit and flexibility for donor-recipient matching
in certain cases.37 For example, the United States
allocation system does consider utility in the spe-
cific contexts of hepatocellular carcinoma or chol-
angiocarcinoma, by which patients exceeding
certain criteria do not receive standard priority for
liver transplant, owing to the excess risk of post-
transplant recurrence and thus lower transplant
benefit.37 Such rules may set a precedent for utility
to be considered in future liver allocation policies.

Disparities in waitlist outcomes also arise from
unequal access to transplant. Patients with the
Hepatology 2022 vol. 76 j 1318–1329 1319
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Table 1. Limitations of existing and proposed waitlist mortality risk scores to be used in liver allocation.

Score Components Strengths Limitations

Child-Pugh score139 Bilirubin, INR, albumin, asci-
tes, encephalopathy

� Established minimal listing criteria for
liver transplant candidates

� Inclusion of potentially subjective vari-
ables i.e. ascites and encephalopathy

MELD7 Bilirubin, INR, creatinine � Adequate discriminative ability
� Use of objective and widely available

tests
� Improved waitlist mortality, equity in

liver allocation

� Underestimation of renal dysfunction in
women compared to men

� Does not accurately represent transplant
urgency for certain disease etiologies such
as hepatocellular carcinoma

� May not accurately represent mortality
risk for complications such as hepatic en-
cephalopathy or acute-on-chronic liver
failure

MELD-Na9 Bilirubin, INR, creatinine,
sodium

� Addition of sodium as a surrogate for
ascites

MELD-Plus140 Bilirubin, INR, creatinine, so-
dium, albumin, total choles-
terol, WBC, age, length of stay

� Improved mortality prediction
compared to MELD-Na after hospital
admission

� Only calculated after a cirrhosis-related
hospital admission

MELD-lactate141 Bilirubin, INR, creatinine, so-
dium, lactate

� Improved in-hospital mortality pre-
diction compared to MELD or MELD-
Na in patients hospitalised for infec-
tion or MELD <−15

� Only calculated during a hospital
admission

MELD-Na-MDRD18,22 Bilirubin, INR, creatinine, age,
sex, race

� More accurate estimation of renal
function accounting for potential dif-
ferences in muscle mass

� Did not improve mortality prediction

MELD-GRAIL-Na23,24 Bilirubin, INR, creatinine,
blood urea nitrogen, age, sex,
race, albumin, sodium

� Estimation of renal function developed
for liver disease with better accuracy
and precision compared to standard
eGFR calculations

� Improved mortality prediction in
MELD >32

� Inclusion of age and race could lead to bias
in allocation

MELD-Cystatin C25,26 Bilirubin, INR, creatinine, cys-
tatin C

� Biomarker of renal function less sus-
ceptible to differences in muscle mass

� Lack of clinical availability
� Mitigated sex differences but no

improvement in predictive power
MELD-Na-Shift28 Bilirubin, INR, creatinine,

sodium
� Adds 0-1 MELD points for women
� Modelled to eliminate sex disparity in

transplant rates

� Addition of points for women at arbitrary
levels

MELD 3.010 Bilirubin, INR, creatinine, so-
dium, sex, albumin

� Addition of 1.33 points for women
� Updated coefficients and interactions;

adjusted upper bound for serum
creatinine

� Improved mortality prediction
compared to MELD-Na

� Calculation somewhat more complex

eGFR, estimated glomerular filtration rate; GRAIL, glomerular filtration rate assessment in liver disease; INR, international normalised ratio; MDRD, modification of diet in
renal disease; MELD, model for end-stage liver disease; WBC, white blood cell.

Key point

Factors not traditionally
reflected by the MELD
score, such as malnutrition,
frailty, and sarcopenia,
have improved prognosti-
cation in patients with
cirrhosis.
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same medical urgency should have an equal op-
portunity of receiving a liver transplant, yet this is
currently not the case. Upcoming changes in allo-
cation in the United States include not only opti-
misation of the MELD score but also continuous
distribution, a composite point scoring system that
will enable the consideration of additional vari-
ables, including height, body surface area, blood
type, geography, paediatric status, and travel effi-
ciency, and indication for transplant (i.e. excep-
tions), to move closer to fair and equitable organ
allocation. Under the proposed framework defined
by the Organ Procurement and Transplantation
Network (OPTN) in the United States, continuous
distribution will attempt to balance 5 goals: med-
ical urgency, post-transplant survival, candidate
biology, patient access, and placement efficiency,
although the specific attributes ultimately included
and their respective weighting will depend on
feedback from the transplant community and
modelling and analysis. The system is envisioned to
provide a more dynamic reflection of patient-
Journal of Hepatology 2022 vol. 76 j 13
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related factors and thereby improve access.38–40

Consensus processes, such as that described by
the Italian liver transplant community, may help to
develop allocation policy that fairly balances the
various priorities of liver transplantation, including
urgency, utility, and transplant benefit.37

Beyond MELD – For prognostication
Muscle dysfunction as a clinical marker for
assessing disease severity in patients
with cirrhosis
Emerging factors that have not classically been
reflected by the MELD score, such as malnutrition,
frailty, and sarcopenia, have improved our ability
to dynamically characterise the morbidity and
mortality associated with cirrhosis.41 Malnutrition
represents a spectrum of nutritional deficiencies
that cause adverse effects on physiologic function
or clinical outcomes.42 It contributes to and is
interdependent with measurable clinical
manifestations of muscle dysfunction: frailty
and sarcopenia.41
18–1329
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Key point

Longitudinal electronic
health records hold great
promise for dynamic
outcome prediction,
particularly with the appli-
cation of common data
models and the centralisa-
tion of data.
Frailty is classically defined as the clinical state
of decreased physiologic reserve and increased
vulnerability to health stressors.43 In patients with
cirrhosis, this manifests as the phenotypic repre-
sentation of impaired muscle contractile func-
tion.44 Frailty is estimated to be present in 17% to
43% of patients with cirrhosis based on different
measurement standards;45–48 it worsens in pa-
tients with cirrhosis over time and has been
strongly associated with waitlist and post-
transplant mortality. For instance, frailty was
associated with a nearly 2-fold higher adjusted risk
of death in 1,044 ambulatory patients with
cirrhosis awaiting liver transplantation in a multi-
centre study in the United States.45 Moreover,
frailty is linked with increased healthcare uti-
lisation both in the ambulatory and hospitalised
settings. Given frailty’s strong association with
post-transplant outcomes, the concept of “pre-
habilitation” or intervening to modify physical
reserve prior to surgery has gained traction in both
transplant and non-transplant surgical fields.49,50

Arrest or reversal of the progression of frailty is
thought to be a clinically relevant achievement that
should incentivise liver transplantation.49 As such,
the American Association for the Study of Liver
Diseases now recommends all patients with
cirrhosis should be assessed for frailty with a
standardised tool at baseline and longitudinally;41

and the American Society of Transplantation rec-
ommends the same for patients awaiting
liver transplantation.49

Sarcopenia is defined as the progressive and
generalised loss of skeletal muscles associated with
increased likelihood of adverse outcomes.51 Sar-
copenia is also common in adults with cirrhosis,
affecting 30% to 70% of patients with strong sex-
based differences in prevalence.52,53 The gold
standard for sarcopenia assessment is computed
tomography imaging; since abdominal imaging is
commonly performed for clinical reasons, muscle
mass measurements are often obtainable.54,55 Sar-
copenia has a robust association with waitlist
mortality before and after transplant, as well as
with hepatic decompensation.52,56,57 Sarcopenia is
progressive in patients with cirrhosis, and serial/
longitudinal measures of muscle loss have been
associated with clinical outcomes including wait-
list mortality.58

Electronic health data and multicentre
electronic consortiums
Recent advances in computing power in conjunc-
tion with the availability of large databases and
analytical methodologies have dramatically
increased the tools available for clinical research in
hepatology. Historically, the predominant forms of
large clinical research databases in the United States
and Europe have been based on either patient reg-
istries, such as the Scientific Registry of Transplant
Recipients or Eurotransplant databases,11,59,60
Journal of
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multicentre curated cohorts, or administrative
claims databases.61–63 Beyond these large data-
bases, there has been a growing movement towards
aggregation of longitudinal electronic health re-
cords (EHRs) across multiple institutions and
health systems.64–66

In the United States and the European Union,
EHRs now have greater than 96% penetration in
acute care hospital and physicians’ offices.67,68 EHR
data, gathered as the transactional record of health
care delivery and operations, are now viewed as a
key resource to generate unique insights.69 Novel
applications of data science and clinical informatics
on EHR data have the potential to accelerate clin-
ical research and improve patient care. One of the
key advantages of EHR data is its dynamic longi-
tudinal nature with data acquisition occurring at
every interaction that the patient has with the
healthcare system. Correctly harnessed, integration
of longitudinal data could produce more compre-
hensive reflections of patients’ clinical trajectory.

For instance, incorporation of time-variant var-
iables, such as laboratory values and vital signs,
captured in EHRs have enabled continuous pre-
diction of the development of acute kidney injury
during inpatient admissions.70,71 Moreover, the use
of longitudinal and sequential data elements
gathered from EHR flowsheets, medication ad-
ministrations, physician notes, and radiology re-
ports have enabled the construction of deep-
learning models to more accurately predict in-
hospital mortality, 30-day readmissions, and pro-
longed length of stay.72 In clinical hepatology, the
integration of longitudinal EHR elements, such as
structured flowsheet entries, medication adminis-
tration, procedure orders, vital signs, and labora-
tory values, has enabled dynamic calculations of
the North American Consortium for the Study of
End-Stage Liver Disease-ACLF and Chronic Liver
Failure Consortium-ACLF prognostication scores in
hospitalised patients with ACLF.73

Despite the potential for longitudinal EHR data
to improve outcome prediction, the lack of stan-
dards, lack of semantic interoperability, and
disparate EHR systems/implementations have his-
torically limited large multi-institution collabora-
tions.74 Early regional-based EHR consortiums,
such as HealthLNK based in the Chicago area, have
demonstrated the value of multicentre EHR data in
predicting factors associated with mortality in pa-
tients with cirrhosis.75

The development and wider availability of
common data models, such as the observational
medical outcomes partnership (OMOP) model and
the fast healthcare interoperability resources
(FHIR) model, may now facilitate larger EHR-based
collaboratives.64,76 Examples of such large EHR-
based research collaboratives include the Obser-
vational Health Data Sciences and Informatics
group based in the United States and the European
Health Data and Evidence Network based in the
Hepatology 2022 vol. 76 j 1318–1329 1321
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European Union.64,77 While the trend towards
common data models and centralised EHR data for
observational research had already been underway,
the COVID-19 pandemic drastically accelerated this
movement with the creation of the National COVID
Cohort Collaborative (N3C).65,78

N3C is a novel, centralised, and harmonised
repository of EHR data from more than 64 sites
from across the United States built on the OMOP
platform, formed in response to the need for rapid
accrual and analyses of clinical data during the
COVID-19 pandemic.65,78 Its effective use has
allowed for the rapid generation of insights into
the mortality risk of SARS-CoV-2 infection among
patients with cirrhosis.79 The work highlights the
prospect of transplant hepatology-specific multi-
centre EHR collaboratives with deep clinical con-
tent expertise, which may accelerate the
development of comprehensive models for mor-
tality prediction in patients with end-stage
liver disease.

Novel modelling methodologies for mortality
risk prediction
While high-dimension multicentre EHR data has
tremendous potential, their “big data” nature may
require the use of novel analytical techniques.80,81

“Big data” is an amorphous term that is classically
defined in terms of the 5 “Vs” (volume, velocity,
variety, veracity, and value) to describe large
datasets that may be more effectively analysed
using 82,83 artificial intelligence-based methods,
such as machine learning (ML), which permit data-
driven rather than hypothesis-driven discov-
ery.84,85 The most prevalent ML algorithms are
divided into supervised (classification) and unsu-
pervised (sorting) methods (Table 2).84,86,87

There is often some overlap between traditional
statistical and ML approaches: Logistic regression
is such an example of a methodology common to
both. In general, classification trees and neural
network-based methods have generally been the
predominant ML algorithms applied to contempo-
rary hepatology research. The cirrhosis mortality
model, developed from the United States Veterans
Affairs Corporate Data Warehouse (VHACDW) us-
ing a combination of gradient boosting and logistic
regression methods, offered significantly improved
discrimination compared to the MELD score.88 Of
particular interest are artificial neural networks
(ANNs), which are learning algorithms that can be
employed for both supervised and unsupervised
tasks. Neural networks are inspired by neuro-
anatomy – each neuron is a computing unit, and all
neurons are connected to build a network. Signals
travel from input layer to the output layer going
through multiple hidden layers – which represent
higher complexity.89–91 Deep neural networks,
characterised by multiple layers between the input
and output layers,91 have been utilised for
Journal of Hepatology 2022 vol. 76 j 13
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longitudinal analyses of EHR data to predict out-
comes of cirrhosis.92

In liver transplant, ML methodologies have been
used to explore waitlist mortality and organ allo-
cation.87,88,92–96 One of the first ML models in
transplant hepatology developed in 2003 was an
ANN model to predict 1-year mortality in a cohort
of 92 patients. While limited in scale, this ANN
model outperformed logistic regression and the
Child-Pugh score.93 Similarly, an ANN-based mor-
tality model derived from patients awaiting liver
transplantation in Italy and validated in the United
Kingdom showed better predictive ability than the
original MELD score.94 The optimised prediction of
mortality model – developed in 2019 and trained
on OPTN data using ML optimal classification trees
– demonstrated superior mortality prediction vs.
the MELD score, and led to decreased mortality and
increased survival benefit across all candidate de-
mographics, diagnoses, and geographic regions in
liver simulated allocation model simulations.97

Despite these encouraging results, ML models
for waitlist mortality have several limitations,
including interoperability and complexity. In
addition, many early applications of ML method-
ologies have only considered binary outcomes
rather than a time-dependent survival function
which is key in the accurate determination of
transplant urgency and waitlist priority. Due to
these limitations and challenges in practical
implementation, waitlist mortality models based
on ML have yet to gain much traction in organ
allocation.98,99 ML models have the potential to
better predict post-transplant outcomes through
the real-time considerations of longitudinal
candidate variables, donor variables, and the
interaction of donor-candidate matching, which
may play a role in continuous distribution.38,39

Potential pitfalls of algorithms for
clinical prediction
While there is substantial potential for ML to in-
fluence clinical practice in transplant hepatology
and potentially improve patient outcomes, limita-
tions of these technologies must be recognised.85

First, additional complexity may not improve pre-
dictive performance if underlying data and vari-
ables are the same. When comparing the ability of
ML models (support vector classification and
random forest) vs. logistic regression to predict
readmission and death in 2,179 North American
patients with ACLF, ML model accuracies were
equivalent to models generated using only the
MELD score. The performance of future ML
modelling may improve if higher density data
incorporating novel variables, such as sarcopenia
and frailty, are available.100

Second, despite harmonisation and ration-
alisation of different ontologies and semantics, data
quality, shift, and reproducibility are still ongoing
18–1329
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Table 2. Common machine learning algorithms used in clinical research.

Algorithm Summary Application example in hepatology

Supervised learning
Linear regression Relationship modelling between a response variable and

one or more explanatory variables
Prediction of liver fat fraction from the presence of meta-
bolic syndrome, type 2 diabetes, and laboratory markers142

Logistic regression Prediction of the probability of a target variable in binary
classification

Prediction of 30-day readmissions for acute-on-chronic liver
failure patients100

Decision tree Classification or regression of data based on simple rules
splitting values of input variables

Prediction of acute kidney injury after liver transplantation
utilising scoring systems143

Random forest Ensemble of multiple decision trees operating as a
committee

Personalised surveillance model for development of hepa-
tocellular carcinoma in patients with hepatitis C cirrhosis144

Gradient boosted trees Ensemble method of building weaker prediction models
sequentially where each model predicts leftover error

Risk stratification of mortality for patients with cirrhosis in
the United States Veteran Health Administration88

Support vector machine Linear classification by finding the hyperplane that maxi-
mises the margins between 2 classes

Prediction of 30-day readmissions for acute-on-chronic liver
failure patients100

K-Nearest neighbor Classification of new data or cases based on similarity or
distance between input features

Identification of molecular signature associated with
development of hepatocellular carcinoma145

Naïve Bayes Use of Bayes theorem to predict membership probability
assuming independence among predictors

Prediction of hepatitis B cirrhosis utilising serum
biomarkers146

Unsupervised learning
K-Means Partition observations into k clusters in each observation

belongs to the cluster with nearest center
Classification of cirrhosis based on un-labelled MRI data147

Principal component analysis Reduce dimensionality by converting correlated variables
into a set of uncorrelated variables

Identification of splanchnic and clinical characteristics
associated with hyperdynamic circulation in patients with
cirrhosis148

Gaussian mixture Probabilistic model that assumes all data are generated from
a finite set of Gaussian distributions

Detection of hepatocellular carcinoma from computed to-
mography images149

Hidden Markov System is assumed to be a Markov model with unobservable
states

Progression from cirrhosis to hepatocellular carcinoma
based on clinical covariates and diagnostic codes150

Neural network algorithms
Artificial neural networks Group of interconnected nodes/computing units that form a

network
Quantification of skeletal muscle mass from computed to-
mography scans54

Convolutional neural networks Neural network with nodes designed to resemble visual
cortices

Prediction of hepatocellular carcinoma development among
patients with hepatitis C cirrhosis95

Recurrent neural networks Neural network where connections between nodes are
based on temporal sequences

Prediction of 1-year mortality in patients with cirrhosis
utilising EHR data92

Deep neural networks Multiple layers between the input and output layers Longitudinal analyses of EHR data elements to predict hos-
pitalisation outcomes72

EHR, electronic health record.
issues in the modelling of EHR data.80,101 Dataset
shift describes the changes in model performance
due to temporal or spatial shifts between the
population used for training and the population
upon which the algorithm is deployed.102,103 One
prominent recent example is the University of
Michigan’s deactivation of a proprietary sepsis-
alert model due to shifts in patient populations
during the COVID-19 pandemic.104 Dataset shift is
not exclusive to ML algorithms but also to other
clinical prediction scoring systems. Periodic audits
and updating of scoring systems, such as the up-
date of MELD to MELD 3.0,10 are necessary to adapt
our clinical tools to changing conditions.

Third, underlying bias can be amplified by
clinical prediction and ML-based algorithms.105,106

The most prominent example in transplantation
is the incorporation of race in estimated glomer-
ular filtration rate (eGFR) calculations, which have
disadvantaged racial minorities in listing practices
Journal of
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and allocation for kidney transplant.29,107 In
transplant hepatology, eGFR has been avoided in
clinical prognostication modelling due to its po-
tential for exacerbating race- and sex-based dis-
parities. Human intelligence, in addition to
artificial intelligence, remains critically important
for the thoughtful and deliberate selection of data
features, variables and analytic methodologies.

Fourth, structured data, which forms the basis
for most classical models and ML algorithms at this
time, are limited by coding. For example, efforts to
diagnose Fontan-associated liver disease were
limited by the lack of specific structured diagnostic
codes across multiple clinical databases.108 The
volume of unstructured data far exceeds structured
data, with an estimated 90% of digital data in
healthcare being unstructured. Incorporating or
converting unstructured data elements in the EHR,
such as imaging reports, pathology reports, and
clinical documentation, into structured or tagged
Hepatology 2022 vol. 76 j 1318–1329 1323
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to develop data-driven
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disease.
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and those on the liver
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features remains challenging. Transformation of
such data into structured data requires substantial
cleaning, splitting, merging, validating, and sorting,
but does improve clinical representation in pre-
dictive analytics.109

Finally, algorithms are not anticipated to
completely replace the “subjective” judgment of
clinicians involved in the care of the peri-
transplant patient.110 For instance, significant
technical expertise is required to conduct split liver
transplantation,111 to use donor organs with tech-
nical variants or higher risk features,112 or to suc-
cessfully transplant patients with complex surgical
histories.113 These institution- and clinician-
specific knowledge and skills are often ill-
captured and ill-evaluated by algorithms.

For these reasons, the application of ML-based
artificial intelligence has received a mixed recep-
tion from both clinicians and the general popula-
tion.114–116 Among clinicians, there are latent fears
that algorithms may ultimately replace their skills
or functions.116,117 In addition, many clinicians are
uncomfortable with “black box” ML tools, even
though examples of similar opacity abound in
other diagnostic and therapeutic areas of clinical
medicine.118 Among providers and patients, there
is a concern about the loss of patient-provider re-
lationships, privacy in data use, and accountability
– namely who is responsible for adverse outcomes
due to clinical decisions influenced or augmented
by artificial intelligence.114,115,119 There is an
increasing recognition that transparency, inter-
pretability, and explainability are necessary for
long-term acceptance of artificial intelligence tools.
Ante hoc systems, which are interpretable by
Computational risk
assessment

Random
isation

Fig. 1. Rapid-cycle testing in ‘electronic’ randomised contro
controlled trials could be implemented using CDS systems: comp
an intervention associated with a CDS, the results of which cou
gorithm or the CDS system. CDS, clinical decision support.
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design, and post hoc systems, which provide local
and reproducible explanations for algorithm out-
puts, are now commonly utilised to enable greater
trust in ML algorithms.116,120 Similarly, active
incorporation of human knowledge, or expert-
augmentation, in the algorithm construction pro-
cess is another strategy to improve “explain-
ability.”121 To begin to address these concerns, the
development of standardised tools and evaluations
on transplant reporting and assessments of bias in
applied ML techniques is currently underway.102,122

Beyond MELD – for improvement in
patient outcomes
Emerging technologies to actively manage
waitlist mortality risk
One technology to overcome issues with unstruc-
tured data is natural language processing (NLP),
which is a suite of related techniques to convert
unstructured or narrative text into tagged or
structured elements for analysis.123,124 There has
been particular interest in utilising NLP for the
diagnosis of non-alcoholic fatty liver disease as this
condition is poorly documented in structured EHR
data.125,126 NLP has been used on abdominal ul-
trasound, computerised tomography, and magnetic
resonance imaging reports from the VHACDW to
rapidly screen patients with radiographic evidence
of fatty liver disease.126 In an analysis of clinical
notes available for 38,575 patients enrolled in the
Mount Sinai BioMe cohort, NLP methods out-
performed ICD codes and text search.125

Real-time clinical decision support (CDS) and
prospective risk modelling are also emerging areas
of research/implementation in the management of
-

InterventionClinical decision
support

Feedback to
computational
assessment

Feedback to
clinical decision

support

Usual care

lled trials. Schematic of rapid-cycle ‘electronic’ randomised
utational risk assessment allows a patient to be randomised for
ld then be used to iteratively modify the risk stratification al-
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patients with cirrhosis. Simple decision support
tools have been implemented to support targeted
quality improvement efforts, such as the proper
use of ceruloplasmin in liver disease evaluation,127

improving hepatitis C screening,128 and albumin
utilisation.129 The substitutable medical applica-
tions and reusable technologies on FHIR (SMART-
on-FHIR) application programming interface al-
lows for the development of more complex and
prospective CDS systems by securely and auto-
matically pulling in relevant patient data from
disparate locations in the EHR.130,131 Previous
SMART-on-FHIR CDS applications created to sup-
port the American Academic of Pediatrics guideline
on management of neonatal hyperbilirubinemia
were shown to have excellent usability and
improved order rates for clinically appropriate
phototherapy.132 SMART-on-FHIR CDS applications
have yet to be widely pilot tested or implemented
in the care of patients with cirrhosis.

Potential applications of encounter-level CDS
include improving adherence to guideline-
recommended care in cirrhosis, promoting timely
intervention before anticipated/forecasted clinical
decompensation,133,134 or aiding immunosuppres-
sion surveillance in the post-transplant setting.135

On a patient or precision-level, CDS could allow
for the calculation of “personalised” risk models for
progression of fibrosis to cirrhosis, development of
hepatocellular carcinoma, and risk of waitlist
dropout.136 The use of these models and CDS sys-
tems may help inform decisions surrounding organ
allocation and acceptance in the future. Prospective
implementation of such CDS systems could allow
for real-world “electronic” experiments or clinical
trials (Fig. 1).137,138 These concepts remain unex-
plored in chronic liver disease and liver trans-
plantation, but may generate significant real-world
evidence that could be used to optimise organ
allocation and reduce waitlist mortality.

Conclusions
While the demographics and epidemiology of
chronic liver diseases have changed dramatically in
the past two decades, the MELD score and its
successors have continued to provide robust pre-
dictions of short-termwaitlist mortality. Continued
refinements of the MELD score, such as MELD 3.0,
improve its predictive ability and actively address
deficiencies such as sex-based differences in wait-
list mortality. Continuous distribution has emerged
as a conceptual framework to optimise organ
allocation by weighing factors beyond waitlist
mortality. The selection of variables for changes to
the liver allocation system, however, remains
fraught with challenges, requiring careful consid-
eration of objectivity, verifiability, and availability.
Journal of
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In the management of patients with cirrhosis
and hepatic decompensation, more accurate,
comprehensive, and real-time prediction of mor-
tality, based on availability of the large amounts of
information in EHRs, has the potential to dramati-
cally change how we approach the clinical care of
patients with cirrhosis and its complications. In
addition, novel concepts and emerging technolo-
gies may play a major role in refining mortality
prediction in an individual patient. For example,
the prognosis of a patient with cirrhosis may be
accurately assessed by deep neural network-based
algorithms incorporating past clinical data in the
EHR, current MELD 3.0, frailty measurements, and
muscle mass volume derived from a computed
tomography scan on an integrated SMART-on-FHIR
application in the EHR system. We hope that,
sometime in the near future, these novel tools will
provide clinically actionable information to alter a
patient’s outcome, well beyond determining a pa-
tient’s priority ranking for liver allocation.
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