FOCUS SULLE MALATTIE INFIAMMATORIE CRONICHE INTESTINALI XI EDIZIONE

27-29 Aprile 2023 Four Points by Sheraton Catania Hotel Aci Castello (CT)

Interazioni Tra Immunità Innata e Microbiota Intestinale Nelle MICI

Loris R. Lopetuso

Digestive Disease Center

Fondazione Policlinico Universitario A. Gemelli IRCCS Roma DMSI – Università «G. D'Annunzio» Chieti-Pescara

Starting from the end: Microbiota and IBD

Gut microbiota composition is altered in IBD vs controls

Gut microbiota composition is altered in active vs non-active IBD

Gut microbiota can influence the development of IBD

Microbial alterations in IBD

Healthy				Inflammatory bowel disease			
	Firmicutes		Bacteroidetes	Bacterial diversity \downarrow		Proteobacteria	
	Roseburia		Faecalibacterium prausnitzii	Enterobacteriaceae		Adherent-invasive Escherichia coli	
	Faecalibacterium		Rosenburia hominis	Fusobacterium		Shigella species	
	Dorea		Rosenburia intestinalis	Enterococcus		Ruminococcus gnavus	
	Blautia		Akkermansia muciniphila	Megasphaera		Ruminococcus torques	
	Christensenellaceae		Saccharomyces cerevisiae	Campylobacter		Fusobacterium nucleatum	
	Collinsella			Gammproteobacteria		Bacteriodes fragilis	
	Ruminococcus			Deltaproteobacteria		Klebsiella pneumoniae	

Candida albicans

Malassezia restricta

Caudovirales bacteriophages

Bacterial genus

Bacterial phyla

Zheng et al, UEGJ 2022

Microbial alterations in special conditions: pouchitis

Pouch in I Akkermansia muciniphila Bacteroides Bacteroides fragilis Bifidobacterium adolescentis Bifidobacterium longum Blautia Catenibacterium Clostriaceae Collinsella aereofaciens Coprococcus Coriobacteriacea Dialister Dorea Eggerthella lenta Enterobacteriacea Enterococcus Erysipelotrichaceae aecalihacterium prauspitzi Ruminococcus anavu Gemellaceae Klebsiella Lachnospiracea Megasphaera Oscillospira Peptoniphilus Prevotella copri Ruminococcacea Streptococcus Turicibacter Veillonella dispar Pouch infiammate Lopetuso et al, unpublished data

Acidobacteria Actinobacteria Bacteroidetes

Cvanobacteria

Euryarchaeota

Lentisphaerae Planctomvcetes

Proteobacteria

Syneraistetes

Tenericutes TM7 Verrucomicrobia

Gemmatimonadete

Firmicutes

Metabolomic alterations in IBD

Franzosa et al, Nature 2019

Metaproteomic alterations in IBD

Starting from the end: Microbiota and IBD

Gut microbiota composition is altered in IBD vs controls

Gut microbiota composition is altered in active vs non-active IBD

Gut microbiota can influence the development of IBD

Microbiota and immune system relationship

Innate immune response

- Epithelial cells
- Myeloid cells
- Innate lymphoid cells

Adaptive immune response

- IgA
- TH17 cells
- Treg cells

Microbiota is important for the correct development of both innate and adaptive immune response

Microbiota educates immune system to react to pathogens but also to tolerance

Microbiota and immune system relationship

Innate immune response

- Epithelial cells
- Myeloid cells
- Innate lymphoid cells

Adaptive immune response

- IgA
- TH17 cells
- Treg cells

Microbiota is important for the correct development of both innate and adaptive immune response

Microbiota educates immune system to react to pathogens but also to tolerance

Bacterial translocation in IBD

HOMEOSTASIS

CROHN'S DISEASE

Linares R, et al. Front Cell Dev Biol. 2021

Microbiota and epithelial cells

Table 1 Main immunological functions of IEC

Main cytokines produced by IEC

```
Proinflammatory cytokines: TNF-\alpha and IL-15 (in IBD patients) [2, 33]
```

- Proinflammatory cytokines IL-1 β and TNF- α causing an increase of MCP-1 production in vitro by IECs (chemokine playing role in intestinal inflammation in IBD) [2]
- Anti-inflammatory cytokines IL-4, IL-10, IL-13 downregulating the production of MCP-1 in vitro by IECs and monocytic lysosomal enzyme release [39]

TGF- β causing suppression inflammation in neonatal gut [55]

Main receptors

TLRs (Toll-like receptors), which recognize microbe-associated molecular patterns and activate inflammatory mechanisms. TLRs have different expression in various parts of the intestine [2, 33]

MHC-I and MHC-II molecules responsible for antigen presentation to lymphocytes [33]

Other functions

The production of mucin proteins, i.e., TSLP^a which decreases the production of proinflammatory cytokines: IL-12 and IL-25 by DCs with simultaneously increasing production of IL-10 [33]

Influence the production of antibodies (sIgA) which prevent the adherence of antigens to gut mucosa [33]

Secretion of C3 complement component [40]

Production of serotonin [51]

Inhibition of PLT adhesion to and aggregation by fibrinogen [22]

Górski et al, Cellular and Mol Sciences 2017

Epithelial-specific TLR5 Activation Mediates Barrier Dysfunction in Experimental Ileitis

Ileal TIr5 and serum antiflagellin IgG antibodies are increased in SAMP before the onset of inflammation and during established disease.

These trends are abrogated in the absence of colonizing commensal bacteria.

Ileal epithelial TLR5 in preinflamed SAMP is increased compared with agematched AKR and germ-free SAMP.

Epithelial-specific TLR5 Activation Mediates Barrier Dysfunction in Experimental lleitis

4-wk-old lleum

AKR

Tlr2

SAMP

TIr4

TIr5

TLR5-specific activation of SAMP ileal tissues decreases epithelial barrier resistance, indicative of increased permeability, and is accompanied by altered expression of the tight junction proteins, claudin-3, occludin, and zonula occludens-1.

Aberrant, elevated TLR5 expression is present in the ileal epithelium of SAMP mice and is augmented in the presence of the gut microbiome. TLR5 activation in response to bacterial flagellin results in a deficiency to maintain appropriate epithelial barrier integrity.

lleum SAM AKR SPF

Lopetuso et al, IBD 2017

Barrier dysfunction is a primary defect in IBD: studies on twins

Keita ÅV, et al. J Crohns Colitis. 2018

Increased Intestinal Permeability Is Associated With Later Development of IBD in relatives

Altered Gut Microbiome Composition and Function Are Associated With Gut Barrier Dysfunction in Healthy Relatives of Patients With CD

0.0

0.5

Colidextribacter

p-Value=0.002

Adlercreutzia

p-Value=0.003

Family XIII UCG 001

Enterorhabdus

Adlercreutzia

Clostridia UCG 014

-0.5

Gut barrier epigenetic dysfunction in IBD

Intestinal epithelial cells (IEC) from mucosal biopsies of children newly diagnosed with IBD

Gut segment-specific differences in DNA methylation and transcription profiles of IECs

Changes in gut microbiota between IBD and control groups were not as large and were difficult to assess due large amounts of intra-individual variation.

Only IECs from patients with CD had changes in DNA methylation and transcription patterns in terminal ileum epithelium, compared with controls.

Colon epithelium from patients with CD and from patients with UC had distinct changes in DNA methylation and transcription patterns, compared with controls.

Malassezia Is Associated with Crohn's Disease and Exacerbates Colitis in Mouse Models

- M. restricta is associated with the colonic mucosa in CD patients
- M. restricta is found in CD patients with a diseaselinked polymorphism in CARD9
- M. restricta exacerbates colitis in WT and gnotobiotic mice
- Malassezia-exacerbated colitis in mice requires signaling via CARD9

Gut barrier dysfunction in IBD: transcriptomic data

Viral infection induced autoimmunity may represent a pathomechanism for IBD, especially CD

- Differentially expressed genes in the colonic mucosa of CD and UC correlated with response to microbial antigens
- Virus infection and autoimmune pathways upregulated in CD but not in UC when compared with controls
- Some expressed genes elevated in both CD and UC, with CD exhibiting more pronounced elevations
- Gene expression levels in viral infection pathways correlated with those of autoimmune pathways
- Pattern recognition-mediated innate immune pathways (TLR4 and TLR2) were significantly elevated in UC but not in CD

Different intervention targets for CD and UC, which may lead to more effective treatments for IBD

Yang et al. IBD 2019

Microbiota and immune system relationship

Innate immune response

Epithelial cells

- Myeloid cells
- Innate lymphoid cells

Adaptive immune response

- IgA
- TH17 cells
- Treg cells

Microbiota is important for the correct development of both innate and adaptive immune response

Microbiota educates immune system to react to pathogens but also to tolerance

Thaiss et al, Nature 2016

Abrogation of the subepithelial macrophage barrier against the gut microbiota in IBD

Continuous band of CD68+ macrophages underneath the luminal epithelium

fragmented CD68+ band of macrophages

Rubio et al. Histopathology. 2017

Microbial/innate immune alterations in special conditions: pouchitis

Lopetuso et al, unpublished data

Interactions between gut mycobiota and immune system in IBD

Iliev ID. Nat Rev Gastroenterol Hepatol. 2022

IBD patients possess an imbalanced intestinal Virome and a dysregulated immune system

Jansen D, et al. Viruses. 2023

Microbiota and immune system relationship

Innate immune response

- Epithelial cells
- Myeloid cells
- Innate lymphoid cells

Adaptive immune response

- IgA
- TH17 cells
- Treg cells

Microbiota is important for the correct development of both innate and adaptive immune response

Microbiota educates immune system to react to pathogens but also to tolerance

Environmental exposures and the risk of IBD

Adapted from Allin et al, J. Gastroenterol 2021

Antibiotics and environmental exposures in the early life: chronic intestinal inflammation

Study ID	Odds ratio (95% CI)	% Weight	Study ID	Odds ratio (95% CI)	% Weight
IBD Shaw, S Y et al Shaw, S Y et al Shaw, S Y et al Hviid, A et al Subtotal (I-squared = 81.2%, p = 0.001)	5.80 (1.70, 19.84) 1.07 (1.02, 1.12) 2.90 (1.20, 7.00) 1.84 (1.08, 3.14) 2.00 (1.05, 3.83)	2.20 9.03 3.48 5.70 20.41	West Shaw, S Y et al Shaw, S Y et al Han, D Y et al Han, D Y et al Han, D Y et al Shaw, S Y et al	 5.80 (1.70, 19.84) 1.07 (1.02, 1.12) 3.21 (1.87, 5.52) 2.33 (1.46, 3.72) 2.19 (1.41, 3.40) 5.30 (1.61, 17.48) 	2.20 9.03 5.64 6.25 6.48 2.30
Troelsen, F S et al Han, D Y et al Han, D Y et al Han, D Y et al Ng, S C et al	1.01 (0.73, 1.39) 3.21 (1.87, 5.52) 2.33 (1.46, 3.72) 2.19 (1.41, 3.40) 0.20 (0.07, 0.56) 0.96 (0.75, 1.23)	7.47 5.64 6.25 6.48 2.87 8.05	Shaw, S Y et al Shaw, S Y et al Almasri, J et al Subtotal (I-squared = 85.2%, p = 0.000)	0.90 (0.20, 4.12) 2.90 (1.20, 7.00) 1.00 (0.52, 1.93) 2.11 (1.34, 3.33)	1.57 3.48 4.81 41.76
Virta, L et al Shaw, S Y et al Hviid, A et al Almasri, J et al Subtotal (I-squared = 83.6%, p = 0.000)	2.06 (0.97, 4.37) 5.30 (1.61, 17.48) 3.41 (1.45, 8.02) 1.00 (0.52, 1.93) 1.59 (1.06, 2.40)	4.19 2.30 3.61 4.81 51.67	East Troelsen, F S et al Ng, S C et al Niu, J et al Fabiana, C et al	1.01 (0.73, 1.39) 1.02 (0.72, 1.44) 0.20 (0.07, 0.56) 2.36 (1.50, 3.73) 0.96 (0.75, 1.23)	7.47 7.27 2.87 6.34 8.05
UC Troelsen, F S et al Niu, J et al Fabiana, C et al Shaw, S Y et al Hviid, A et al Subtotal (I-squared = 70.9%, p = 0.008)	1.02 (0.72, 1.44) 2.36 (1.50, 3.73) 0.90 (0.71, 1.15) 0.90 (0.20, 4.12) 1.21 (0.61, 2.39) 1.22 (0.82, 1.80)	7.27 6.34 8.10 1.57 4.64 27.91	Fabiana, C et al Virta, L et al Hviid, A et al Hviid, A et al Subtotal (I-squared = 76.7%, p = 0.000)	0.90 (0.71, 1.15) 2.06 (0.97, 4.37) 3.41 (1.45, 8.02) 1.21 (0.61, 2.39) 1.84 (1.08, 3.14) 1.22 (0.92, 1.63)	8.10 4.19 3.61 4.64 5.70 58.24
Overall (I-squared = 80.6%, p = 0.000) Image: Comparison of the squared set of	1.50 (1.22, 1.85) 19.8	100.00	Overall (I-squared = 80.6%, p = 0.000) NOTE: Weights are from random effects analysis .0504	1.50 (1.22, 1.85) 19.8	100.00

Lee et al 2020 Zhang et al 2022 Zou et al 2020

WHICH APPLICATIONS IN IBD?

TOWARDS A PERSONALIZED IBD THERAPY

Optimize treatments Minimize side-effects and costs

Moving toward a Microbiota signature for IBD patients

MICROBIOTA SIGNATURE: the inflammatory microbiome of a patient with an active UC disease

Unità tassonomica	Unità tassonomica		CTRL	ANDAMENTO ²
Actinobacteria	Bifidobacterium	0.03550	0.00621	+
Actinobacteria	Bifidobacterium adolescentis	0.02567	0.00027	+
Actinobacteria	Bifidobacterium longum	0.01599	0.00205	+
Actinobacteria	Collinsella	0.00092	0.00008	+
Euryarchaeota	Methanobrevibacter	0.00000	0.00912	-
Firmicutes	Clostridium hiranonis	0.00006	0.00000	+
Firmicutes	Dorea formicigenerans	0.00011	0.00000	+
Firmicutes	Oscillospira	0.00134	0.00753	
Firmicutes	Ruminococcus bromii	0.00347	0.00005	+
Firmicutes	Streptococcus	0.00097	0.01670	-
Proteobacteria	Acinetobacter	0.00006	0.00001	+
Verrucomicrobia	Akkermansia muciniphila	0.00039	0.22569	-

MICROBIOME-ASSOCIATED BIOMARKERS IN IBD MANAGEMENT

Fecal and mucosal microbiome

Diagnosis Classification Disease activity Disease course Recurrence after surgery Responses to therapeutics

Bacteria derived metabolites, serum and fecal microbe-associated proteins

IBD determination and classification

Caenepeel et al. - APT 2020 Zheng et al, UEGJ 2022

Microbiota-IL-33/ST2 profiling can predict mucosal response to anti-TNF in UC

IL-33

Lopetuso et al, PNAS 2018 Lopetuso et al, unpublished data

Starting from the end: Microbiota and IBD

Gut microbiota composition is altered in IBD vs controls

Gut microbiota composition is altered in active vs non-active IBD

Gut microbiota can influence the development of IBD

IBD changes when targeting microbiota

Therapeutic microbiota modulation

Diet & nutritional support

- Caloric amount, minerals, vitamins
- Diet composition (fibers/high glicemic index/saturated fatty acids...)

Removal of predisposing conditions

- Treat diabetes, endocrine, other motility disorders..
- Surgery or prokinetics when indicated

Therapeutic interventions

- Antibiotics
- Prebiotics, probiotics, postbiotics, symbiotics
- Fecal Microbiota Transplantation

Designing strategies for reconfiguring homeostasis

Vogel et al 2020 Tamburini et al 2016

The first international ROME consensus conference on gut microbiota and faecal microbiota transplantation (FMT) in inflammatory bowel disease (IBD).

Loris Riccardo Lopetuso^{1,18,19#}, Sara Deleu^{2#}, Lihi Godny³, Valentina Petito¹, Pierluigi Puca¹, Federica Facciotti⁴, Harry Sokol⁵, Gianluca Ianiro⁶, Luca Masucci⁷, Maria T. Abreu⁸, Iris Dotan³, Samuel Costello⁹, Ailsa Hart¹⁰, Tariq Iqbal¹¹, Sudarshan Paramsothy¹², Maurizio Sanguinetti⁷, Silvio Danese¹³, Herbert Tilg¹⁴, Fabio Cominelli¹⁵, Theresa T. Pizarro¹⁶, Alessandro Armuzzi¹⁷, Giovanni Cammarota⁶, Antonio Gasbarrini⁶, Severine Vermeire^{2*}, Franco Scaldaferri^{1*}

