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a b s t r a c t 

The use of artificial intelligence is rapidly increasing in medicine to support clinical decision making 

mostly through diagnostic and prediction models. Such models derive from huge databases ( big data ) in- 

cluding a large variety of health-related individual patient data ( input ) and the corresponding diagnosis 

and/or outcome ( labels ). Various types of algorithms (e.g. neural networks) based on powerful computa- 

tional ability ( machine ), allow to detect the relationship between input and labels ( learning ). More com- 

plex algorithms, like recurrent neural network can learn from previous as well as actual input ( deep learn- 

ing ) and are used for more complex tasks like imaging analysis and personalized ( bespoke ) medicine. The 

prompt availability of big data makes that artificial intelligence can provide rapid answers to questions 

that would require years of traditional clinical research. It may therefore be a key tool to overcome sev- 

eral major gaps in the model of advanced chronic liver disease, mostly transition from mild to clinically 

significant portal hypertension, the impact of acute decompensation and the role of further decompen- 

sation and treatment efficiency. However, several limitations of artificial intelligence should be overcome 

before its application in clinical practice. Assessment of the risk of bias, understandability of the black 

boxes developing the models and models’ validation are the most important areas deserving clarification 

for artificial intelligence to be widely accepted from physicians and patients. 

© 2022 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved. 

1

(

t

i

c

s

i

l

i

t

l

t

t

b

a

t

s

d

t

o

p

t

l

u

h

1

. Introduction 

The continuous increase in the use of Electronic Health Records 

EHR) is providing large clinical databases which make it possible 

o quickly investigate the relations between the different types of 

nformation they contain and different types of conditions or out- 

omes. The study of these relations has identified a specific re- 

earch area based on EHR. The interest in this type of research 

s steadily increasing because of the prompt availability of very 

arge patient samples including baseline and follow-up character- 

stics, time to relevant clinical events and outcomes. Therefore, 

hese studies may answer important research questions in much 

ess time and at much less cost than prospective studies, provided 

hat the risk of bias common in retrospective studies (mostly pa- 
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ient selection, attrition, blindness, and outcome assessment) may 

e adequately controlled. 

Technological evolution in the field of computing and data stor- 

ge allows the formation of huge databases ( big data ) including any 

ype of data produced in clinical practice spanning from genome 

equencing to high resolution imaging, clinical history, laboratory 

ata, vital function monitoring, sequential clinical characteristics, 

reatments, time to relevant clinical events, mortality, and many 

thers. The availability of such types of information in large patient 

opulations is also rising the interest towards clinical research in 

he field of personalized clinical management, using artificial intel- 

igence (AI) [1] . 

The terms Machine Learning (ML) and Deep Learning (DL) are 

sed with reference to two different levels of complexity of AI with 

L being the most complex. There is not a clearcut definition for 

he two terms neither a clear boundary separating them. ML may 

e thought about as a tool able to produce a decision rule directly 

rom data, without any (human) predefined behavior [ 2 , 3 ]. As an

xample of human predefined behavior for a computer derived 
rights reserved. 
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rediction tool, the MELD score [ 4 , 5 ] was derived by a Cox regres-

ion analysis including few variables: both the type of analysis and 

he variables were selected by physicians in a limited patient sam- 

le. The so-called machine learning spectrum begins where human 

pecification of a predictive algorithm’s rules becomes so complex 

o be too hard to manage, although no precise limit separates “hu- 

an” models from machine learning. 

Deep learning is based on highly complex technologies result- 

ng in dynamic learning algorithms and has been proposed in re- 

ent years for diagnostic models from imaging analysis and for 

rediction models [ 1 , 2 ]. 

A measure of the growing interest for AI in medicine is pro- 

ided by the great increase in the number of publications with the 

erms “artificial intelligence” or “machine learning” or “deep learn- 

ng” in the title, indexed in PubMed from 126 in 2010 to 11,914 in 

arch 2022. 

DL may help improving knowledge of the clinical course of dis- 

ases and its predictability resulting in valid support to decision 

aking particularly for individualized (bespoke) medicine [6–8] . 

he potential applicability of DL algorithms in modeling the clini- 

al course of cirrhosis will be summarized here by exploring areas 

here knowledge is still insufficient and where DL may have sub- 

tantial impact. 

. Major gaps in the knowledge of the course of cirrhosis and 

ts predictability 

In its initial stage, cirrhosis is characterized by a silent course 

nd may remain underdiagnosed for many years. This stage of 

he disease, termed compensated is associated with a median sur- 

ival of ≥ 12 years [9] . When symptoms of disease progression 

ecome clinically overt, the expected median survival is reduced 

o 2–4 years [ 10 , 11 ], with a poor quality of life, need of med-

cations and frequent hospitalizations. This is the decompensated 

tage and is defined by the occurrence of one or more of the ma- 

or clinical manifestations of the disease: ascites, bleeding, hepatic 

ncephalopathy, or jaundice. Almost all the patients with cirrho- 

is who die because of cirrhosis develop decompensation before 

eath, with a small proportion dying at first decompensation while 

eath before decompensation, for unrelated causes, is rare. 

The incidence of decompensation is in the order of 5–7% [ 11 , 12 ]

er year and depends on the severity of portal hypertension [13] . 

n fact, decompensation and development of gastro-esophageal 

arices almost exclusively occur in patients with hepatic vein por- 

al gradient (HVPG) ≥10 mmHg, the threshold for clinically signif- 

cant portal hypertension (CSPH). Among patients with CSPH the 

isk of decompensation is highest in those with esophago-gastric 

arices [ 13 , 14 ]. Patients with HVPG < 10 and > 6 mmHg have mild

ortal hypertension (MPH) and their risk of disease progression is 

he lowest, although the risk size is not yet well established. 

In the last decade, non-invasive tests for fibrosis and/or por- 

al hypertension [15] , mostly the aspartate aminotransferase to 

latelet ratio (APRI), fibrosis-4 index (Fib-4) [16] and liver stiff- 

ess measurement (LSM), measured by liver transient elastography 

TE) [17] allowed to expand the concept of liver cirrhosis to that 

f compensated advanced chronic liver disease (cACLD), which in- 

ludes cirrhosis and chronic liver disease with advanced fibrosis at 

isk of decompensation even without biopsy [15] . Moreover, non- 

nvasive tests accurately predict the risk of disease progression and 

ortality in cACLD [16] . LSM > 15 kPa identifies patients with cA- 

LD (sensitivity 91%, specificity 95%) [18] and LSM ≥25 identifies 

hose with CSPH (sensitivity and specificity > 85%) [19] . Moreover, 

he combination of LSM < 20 kPa and platelets count > 150 × 10 9 /L

ules out the presence of esophagogastric varices needing treat- 

ent for the prevention of variceal bleeding with a sensitivity 
705 
 95%, thus allowing a significant reduction in the indication to en- 

oscopic screening for varices [20] . 

Therefore, the introduction of NITs, and particularly LSM, and 

f the concept of cACLD in clinical practice have substantially re- 

uced the need for liver biopsy and/or HVPG measurement to risk 

tratify patients, making clinical decisions much easier and more 

traightforward in cACLD patients. This is particularly important 

ecause CSPH is a cornerstone in the clinical course of the disease. 

t is associated with a hyperdynamic circulatory syndrome, mostly 

n response to the splanchnic vasodilatation induced by increasing 

ortal pressure. Parallel to the hyperdynamic circulation, bacterial 

ranslocation activates an inflammatory response resulting in pro- 

ressive immune-dysfunction and reduced resistance against infec- 

ions [ 21 , 22 ]. Increasing inflammatory activation causes further va- 

odilation and increase in cardiac output up to a degree where no 

urther compensating mechanisms are possible and hemodynamic 

ysfunction occurs [23] . 

Decompensation has been considered for decades as the occur- 

ence of one or more decompensating event independent of the 

odality of presentation [ 24 , 25 ]. In the last decade acute decom- 

ensation (AD) has been introduced as a peculiar modality of de- 

ompensation defined by the acute development of one or more 

ajor complications: first or recurrent grade 2 or 3 ascites within 

ess than two weeks, first or recurrent acute hepatic encephalopa- 

hy in patients with previous normal consciousness, acute gastroin- 

estinal bleeding, and any type of acute bacterial infection [ 26 , 27 ].

he worst expression of AD is acute on chronic liver failure (ACLF) 

haracterized by the development of organ failures among liver, 

idney, brain, circulation, coagulation, and lung. The major driver 

f AD is credited to be systemic inflammation with several stud- 

es showing significant increase of inflammatory markers as white 

lood cell count, C reactive protein or circulating levels of pro- 

nflammatory cytokines [ 28 , 29 ]. Moreover, the intensity and sta- 

ility of the inflammatory activation has been reported to allow 

isk stratification of patients with AD [27] . However, whether in- 

ammation is the cause or a consequence of the decompensating 

vent, is not yet clearly defined. 

There are several major issues to be clarified in the concept of 

D before it is adopted to risk stratify patients in clinical practice. 

he first is that the reproducibility of the definition is not known. 

n fact, any information on AD has been drawn from patients hos- 

italized for decompensation with criteria for AD assessed post- 

oc [ 26 , 30 ] and reproducibility of the criteria for hospitalization 

ever investigated. A second major issue is that the incidence 

f AD is unknown, while the only available study on the inci- 

ence of ACLF reported that it was approximately 2.5/100 patient- 

ears in outpatients with compensated cirrhosis [31] . Therefore, 

eyond the uncertainty on the applicability of the definition of 

D, no measure is available on the impact of AD in the course of 

irrhosis. 

Following decompensation, disease progression may occur 

hrough further decompensation, which is associated with further 

eduction of expected survival and recognized by consensus [17] as 

 more advanced disease stage. Further decompensation is defined 

s ( a) the occurrence of any of ascites, variceal hemorrhage, hep- 

tic encephalopathy, or jaundice in a patient already decompen- 

ated, ( b) recurrent variceal bleeding or encephalopathy or spon- 

aneous bacterial peritonitis (SBP) or hepatorenal syndrome-acute 

idney injury (HRS-AKI) or ( c) occurrence of ascites, encephalopa- 

hy, or jaundice after recovery from bleeding but not if these 

vents occur around the time of bleeding. In a still unpublished 

arge multicentre study from Europe and Argentina including more 

han 2500 patients [17] , it has been estimated that the develop- 

ent of further decompensation is associated with a sub hazard 

atio of 1.47 (95%CI 1.26–1.72, OLT competing) in patients with a 

revious decompensation. 
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Fig. 1. Schematic representation of the model of cirrhosis. Non-Acute or Acute events cause transition from compensated to decompensated cirrhosis. Further decompensa- 

tion is a next stage before the final outcomes, death, or liver transplant. The question marks represent areas where Deep Learning (DL) may improve present day knowledge. 

Abbreviations: pH = portal hypertension; CSPH = clinically significant portal hypertension; AD = acute decompensation; NAD = non acute decompensation; HE = hepatic 

encephalopathy; ACLF = acute on chronic liver failure; UDC = unstable decompensated cirrhosis; SDC = stable decompensated cirrhosis; deco = decompensating event; 

OLT = orthotopic liver transplant. 

p

q

c

t

w

[

s

t

a

c

m

i

e

M

f

e

g

t

3

c

v

fi

i

a

o

f

e  

m

h

d

n

i

t

m

w

i

f

b

l

“

e

d

t

r

(

d

t

c

i

t

i

t

o

i

t

p

s

t

h

h

a

j

m

c

n

n

o

a

a

a

[

o

s

Etiological treatments in compensated cirrhosis may delay or 

revent decompensation through the reduction of fibrosis conse- 

uent to the removal of the etiologic factor (either virus, or al- 

ohol or obesity and metabolic alterations) [32–35] , and reduc- 

ion of portal hypertension up to reversion of cirrhosis [36–38] , 

hile in early decompensation it may achieve recompensation 

39–42] . 

In summary, compensated cirrhosis progresses from an early 

tage of MPH to CSPH with or without esophago-gastric varices; 

ransition to decompensation occurs through a non-acute or an 

cute event and first decompensation is followed by further de- 

ompensation. Death or OLT are the final outcomes. The course 

ay be relented or reversed by etiological treatment. 

A schematic representation of the course of cirrhosis is shown 

n Fig. 1 . The major areas where we need to improve our knowl- 

dge for clinically sound decision making are the transition from 

PH to CSPH, the intensity and modality of disease progression 

rom CSPH, the impact of AD and ACLF and finally the impact of 

tiological treatments on recompensation. 

How deep learning may substantially contribute to fill these 

aps together with the relevant risk of bias will be discussed in 

he two next paragraphs. 

. Basic concepts of machine learning and its applicability in 

linical practice 

AI uses algorithms designed to adsorb information from large 

olume medical data and find out their relationship with a de- 

ned condition (disease or disease stage) or outcome (time to clin- 

cal events or death) to assist clinical practice. These algorithms 

lso include self-updating instructions to improve accuracy based 

n regular feedback input, thereby reducing clinical error, and of- 

ering a potential for real-time diagnostic and prognostic infer- 

nces [1] . A very large variety of medical data are used for AI in

edicine, encompassing screening, diagnosis, laboratory, imaging, 

istology, treatment, instrumental monitoring recording, data up- 

ate along time, follow-up events, and outcome [43] . Special tech- 

iques [44] have also been developed to convert unstructured clin- 

cal notes (natural language processing) and intervention reports, 

o machine usable data. 

In general, AI is a data computing approach to produce auto- 

ated systems that can perform complex tasks accounting for a 

ide range of data combinations using several families of comput- 
706 
ng technologies. One type of these technologies, based on power- 

ul computational ability ( machine ), is aimed to find relationships 

etween the acquired data ( learning ) and has been termed machine 

earning (ML) [43] . 

Algorithms used in ML are subdivided in “unsupervised ” and 

supervised ” learning, according to whether they are aimed at dis- 

ase characterization/diagnosis based on patient features, or at pre- 

icting outcome through identification of some relationship be- 

ween patient characteristics and outcome. In supervised algo- 

ithms, data are labelled according to their clinical interpretation 

e.g., disease or outcome present/absent). In unsupervised models 

ata are not labelled, and the algorithm classifies them according 

o common characteristics derived by specific mathematical pro- 

esses [45] . The most widely used algorithms in ML are reported 

n Box 1 . 

Support Vector Machine (SVM) and Neural Networks (NN) are 

he most widely used supervised learning algorithms used in med- 

cal applications [1] . 

SVM is based on the weights to be attributed to patient charac- 

eristics to identify two groups of patients according to a relevant 

utcome variable and a decision boundary. The analysis algorithm 

s aimed at achieving the smallest classification error. 

NN may be thought about as an extension of linear regression 

o capture non-linear relationships between baseline features (in- 

ut variables) and an outcome of interest (label). In NN, the as- 

ociations between the input variables and labels are represented 

hrough combinations of pre-specified functional arguments in a 

idden layer unapparent in clinical practice because they may be 

idden in the massive amount of data. In fact, the weights of the 

ssociations between the input variables and the output are ad- 

usted at any transition across such hidden layers, aiming at mini- 

izing the prediction error ( Fig. 2 , left side). 

Deep learning may be considered as a modern extension of the 

lassical neural network technique and may be envisioned as a 

eural network with many more layers to detect more complex 

on-linear relationships between patient features and the outcome 

f interest. It is essentially the process of training a NN to perform 

 given task. Recurrent neural network (RNN) for clinical tasks 

nd Convolutional Neural networks (CNN) for imaging analysis are 

mong the most used techniques for medical applications of DL 

45] . What increases RNN precision in identifying disease patterns 

r in making predictions is the fact that it does not take into con- 

ideration just the actual input but also the previous input which 
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Box 1 

Major Machine Learning development algorithms. 

Model Characteristics 

Regression (linear, logistic) Identifies relationships between input data and output (e.g., diagnosis or outcome) 

Regularized regression Incorporates techniques to avoid overfitting in regression models 

Decision tree Classification based on splitting values of input variables, similar to a clinical algorithm 

Random forest Multiple decision trees 

Support Vector Machine (SVM) Discriminates groups of patients according to patient characteristics and to a decision boundary 

Nearest neighbor Produces predictions based on similar conditions in the training sample 

Neural Network (NN) Many hidden layers used to detect more complex non-linear relationships 

Recurrent Neural Network (RNN) Accounts for previous as well as for actual input. 

Uses artificial neurons with self-connections to process input sequences of arbitrary length. 

Convolutional Neural Networks (CNN) Neural network with nodes designed to resemble visual 

Cortices. Uses hierarchical layers of pattern detectors (artificial neurons) to detect patterns in the data 

Deep Neural Networks Multiple layers between the input and output layers 

Fig. 2. Schematic representation of a neural network and recurrent neural network process through hidden layers [ 1 ]. 
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llows it to memorize what happened previously and to adjust 

he covariate weights accordingly ( Fig. 2 , right side). Therefore, the 

lgorithm is recursively repeated, and estimates adjusted at each 

ew input [1] . 

The efficiency of DL critically depends on the training ( learning ) 

rocess. In fact, when the training dataset is not enough various or 

f it bears some inadvertent bias, the algorithm performance may 

e unsatisfactory [46] . DL algorithms are particularly suitable for 

omplex and highly dimensional data and are mostly used in the 

eld of diagnostic imaging, although in the last few years they are 

ncreasingly used in survival modeling. 

. Assessing the quality of machine learning prediction models 

tudies 

A careful assessment of the quality of prediction models is 

eeded considering their proliferation and their largely inconsis- 

ent results [ 45 , 47 ]. For this purpose, it is suggested using PROBAST

Prediction Model Risk Of Bias ASsessment Tool), a tool designed to 

ssess risk of bias and applicability in studies developing, validat- 

ng, or updating prediction models [48] . 
707
According to the PROBAST tool, quality depends on flaws in de- 

ign, conduct and analysis (i.e., risk of bias) of the study and on its 

pplicability (i.e., the extent to which primary studies are applica- 

le to the clinical question). The quality is assessed exploring four 

omains with 20 signaling questions ( Table 1 ). Answers to each 

uestion are reported as yes/probably yes, no/probably no, no in- 

ormation [48] . Per each domain the ROB may be considered low 

f the answer to all signaling questions is “Yes” or “Probably yes”. 

f ≥1 answer is “No” or “Probably no” the risk may still be judged 

ow if specific reasons are provided supporting low risk. A high 

OB should be assigned when ≥1 of the answers is” No” or “Prob- 

bly no” in the lack of a plausible explanation minimizing the risk 

f bias. ROB is rated as unclear when the relevant information is 

issing, and the relevant argument is not judged to confer a high 

isk of bias. 

In the first domain, patients’ selection, two signaling questions 

im to evaluate appropriateness of data source and in/exclusion 

riteria. Prospective cohorts, randomized clinical trials, and nested 

ase–control studies are considered appropriate data sources. Case- 

ontrol studies are judged at high risk of bias. Routine care 

egistries, the data source of most ML studies, are regarded as 
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Table 1 

PROBAST (Prediction model risk of bias assessment tool) ¶ with example ǂ . 

Domains 

1. Participants 2. Predictors 3. Outcome 4. Analysis 

Type of potential bias 

Selection of participants Predictors or their assessment Outcome or its determination Analysis 

Signaling questions 

1.1. Were data sources appropriate (cohort, RCT, or 

nested case–control study data)? 

2.1. Were definitions of predictors similar for all participants? 3.1. Was the outcome appropriate? 4.1. Were there a reasonable number of outcomes 

observed? 

[probably yes]: retrospective inclusion from available 

database 

[ yes ] [ yes] : “we obtained all-cause mortality data from VA 

Vital Status File that combines information from the 

VA Death File, VA Compensation and Pension 

Benefits, Medicare, and Social Security and has a 

sensitivity of 98.3% and specificity of 99.8%relative to 

the National Death Index”

[ yes ] 

1.2. Were inclusion/exclusion criteria appropriate? 2.2. Were predictor assessments blind to outcome? 3.2. Was the outcome definition prespecified or 

standard definition used? 

4.2. Were continuous and categorical predictors 

handled appropriately? 

[probably no] : “Our cohort included patients with 

cirrhosis who were seen in ambulatory clinics at 130 VA 

hospitals from October 1, 2011, to September 30, 2015.We 

included patients if they had at least 2 instances of 

cirrhosis ……. ”. Patients with at least 2 instances of 

diagnosis of Cirrhosis were included. We considered 

the exclusion of patients with only one instance of 

Cirrhosis as inappropriate 

[ yes ] [ yes ] [ yes ] 

2.3. Are all predictors available at the time prediction is made? 3.3. Were predictors excluded from the outcome 

definition? 

4.3. Were all enrolled participants included in the 

analysis? 

[ yes ,] [ yes ] [probably yes]: “Few laboratory values were missing in 

more than 5% of patients ”

3.4. Were the outcome definition and assessment 

similar for all participants? 

4.4. Were missing data handled appropriately? 

[ yes ] [ yes ] 

3.5. Was the outcome assessment blind to 

predictors information? 

4.5. Was univariable analysis avoided for predictors 

selection? 

[ yes ] [ yes ] 

3.6. Was there an appropriate time interval 

between predictor assessment and outcome? 

4.6. Were complexities in the data (e.g., censoring, 

competing risks, sampling of control participants) 

accounted for appropriately? 

[ yes ] [probably yes ] 

4.7. Was model assessed appropriately? 

[ yes ] 

4.8. Were model overfitting, underfitting, and 

optimism in model performance accounted for? 

[ yes ] 

4.9. Do predictors and their assigned weights in the 

final model correspond to the results from the 

reported multivariable analysis? 

[ yes ] 

Applicability 

Do included participants and setting match the 

question of interest? 

Do definition, assessment, and timing of predictors match the 

question of interest? 

Do outcome definition, timing, and assessment 

match the question of interest 

[ No] : only patients from VA and most were older 

men: 96.6% males, mean age 62.7. 

[ no ]. “ICD9 and drug class codes used to define predictor variables. 

We extracted data for serum levels of bilirubin, sodium, and creatinine 

and international normalized ratio performed within 1 year before and 

closest to the index date ”

We judged the definition and timing of predictors nor relevant 

nor potentially applicable to the daily practice 

[ yes ] 

¶ modified from Table 2 in ref (Wolff 2019, Ann Int Med). 
ǂ shadowed lines report ROB assessment for reference [54] as an example of PROBAST useRCT = randomized controlled trial. 

7
0

8
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ongitudinal cohorts and might be considered at high risk of bias 

hen inclusion and exclusion criteria do not ensure inclusion of 

onsecutively observed patients with the disease of interest. 

The second domain concerns predictors. First, predictors should 

e defined and assessed in a similar way for all participants, espe- 

ially if subjective judgment is required, such as imaging test re- 

ults, as different definitions and measurements can result in bi- 

sed estimate of their association with the outcome. Second, the 

ssessment of the predictors should be made without knowledge 

blinding) of the outcome. This bias is likely to occur in retrospec- 

ive studies where the outcome is already known when predictors 

re assessed, while it may not occur in prospective studies, where 

he predictors are assessed before outcome verification. Third, the 

odel should not include predictors that could not be known at 

he time when the model would be used. For example, to predict 

he risk of bleeding, using non-invasive tests in an outpatient set- 

ing, a model should not include endoscopic assessment of varices 

nd their characteristics, as these data would be unavailable at 

ime of outpatient visit. 

The third domain explores outcome. Outcome definition may 

nclude a single (or a combination of) procedure/s or clinical judge- 

ent/s. Bias can occur when methods used to assess outcomes in- 

orrectly classify participants with or without the outcome. First, 

he appropriateness of outcome assessment should be checked. 

specially in routine-care registries, outcome might be assessed 

ith suboptimal methods. Second, a prespecified or standard out- 

ome definition should be used. Selection of an outcome defini- 

ion, associated with more favorable results, may indeed overes- 

imate the model accuracy. Third, outcomes should be assessed 

ithout information provided by predictors. If a predictor is in- 

luded in the assessment of the outcome, a biased association be- 

ween that predictor and the outcome is likely to be obtained (in- 

orporation bias). Fourth, the outcome should be defined and as- 

essed in the same manner for all study participants. The risk of 

ias is high when different methods are used for outcome defi- 

ition (e.g., if the outcome is hepatocellular carcinoma, it may be 

ssessed by imaging techniques, such as computer tomography or 

agnetic resonance or by histology of biopsy or resected spec- 

men). The outcome should be determined without information 

bout predictors. Knowing predictor results may influence outcome 

ssessment and lead to biased predictive accuracy of the model, 

sually due to overestimation of the association between predic- 

ors and outcome. For objective outcomes (e.g. all-cause mortality) 

linding is less relevant [49] . Sixth, the time interval between pre- 

ictor assessment and outcome determination should be appropri- 

te. In some cases, the time interval may be too short to capture 

he outcome of interest or too long, affecting the outcome defini- 

ion. 

The fourth domain evaluates whether appropriate analysis 

ethods were used. First, an evaluation of the sample size and 

udgment of its appropriateness are required. Generally, the larger 

he sample size, the better. However, for prediction model studies, 

he number of participants with the outcome is even more im- 

ortant than the overall sample size. The number of participants 

ith the outcome not only influences precision but is a potential 

ource of bias. One of the major issues in prognostic modeling is 

verfitting. Usually, sample size calculations for prognostic mod- 

ls are based on the number of events per variable (EPV), con- 

idering the total number of predictors assessed during any stage 

f the prediction model process, not only those included in the 

nal model. Prediction models developed using machine-learning 

echniques require a number of EPVS substantially higher (often > 

00) than traditional studies to minimize overfitting [50] . Second, 

ichotomizing continuous predictors may introduce a bias, espe- 

ially when the cut-off is derived from the same dataset. In gen- 

ral, dichotomization should be avoided as it leads to loss of in- 
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ormation, and an impaired predictive ability [51] . Anyway, clini- 

ally meaningful cut-off should be chosen when dichotomization 

s considered crucial. Third, all enrolled participants should be in- 

luded in the analysis. For example, excluding participants whose 

redictor values were unclear (e.g., unevaluable results on imag- 

ng tests) may produce biased and overestimated accuracy [52] . In 

eneral, when the proportion of study participants excluded from 

he analysis is high the results are at high risk of bias. Fourth, par- 

icipants with missing data should be appropriately handled, e.g., 

ith by multiple imputation methods that are supposed to provide 

he least biased results. However, similarly to the patients excluded 

rom the analysis, the risk of bias increases with a growing per- 

entage of missing data, and the maximum acceptable percentage 

s hardly defined. Fifth, selection of predictors algorithms based on 

nivariate analysis should be avoided. In many studies researchers 

erform a two-step analysis: a univariate analysis including all pre- 

efined predictors followed by a multivariate analysis where only 

he predictors with a statistically significant association (usually P 

 0.05) at the univariate stage are included. Well-established pre- 

ictors and those with clinical credibility should be included and 

etained in a prediction model regardless of any statistical signif- 

cance. Any selection, based on statistical significance of a single 

redictor, might introduce bias by excluding important variables. 

ccordingly, a selection of potential predictors based on nonstatis- 

ical considerations should be preferred. Methods based on an a 

riori approach for selection of predictors are in fact considered 

t low risk of bias. Sixth, complexities in the data (e.g., censor- 

ng, competing risks) and underlying assumptions should properly 

e accounted for [53] . Seventh, both model calibration (comparing 

xpected and actual values, i.e. model predicted probabilities and 

roportions of participants) and discrimination (c-index) address- 

ng the entire range of the model-predicted probabilities should be 

ppropriately evaluated and reported. Of note, ML algorithms re- 

uire two data sets for the development stage: a training set, from 

hich to learn parameters, and a tuning set, to adjust hyperpa- 

ameters (i.e., the parameters, established before model training, 

hat remain fixed through the training process) to avoid optimism. 

he model calibration and discrimination must be assessed in a 

hird independent patients’ sample (validation sample) to avoid 

ptimistic estimates. Eighth, model overfitting and optimism in 

odel performance should be properly considered. In ML studies, 

here the large sample size and EPV reduce overfitting, optimism 

s usually managed by adjusting hyperparameters in the tuning 

et. Nineth, the predictors, and their assigned weights in the final 

odel should correspond to the results from the reported multi- 

ariable analysis. 

Applicability is explored according to the domains of patients 

election, predictors and outcome and depends, respectively on the 

atching of the included participants with the participants defined 

nd specified by the clinical question, and on relevance and usabil- 

ty of predictors and outcome measurements in daily practice. 

Eventually, ML prediction models, just as any other, need ex- 

ernal validation in independent datasets obtained from different 

ocations [ 45 , 47 , 48 ]. 

To illustrate the use of the PROBAST tool we show the ROB as- 

essment of a recent study aiming to predict cirrhosis mortality 

54] ( Tables 1 , 2 ). In this study we found concerns in exclusion

riteria (selection domain) and in applicability (only older males 

ere included and the definition of predictors and timing of their 

ssessment seems not appropriate neither applicable to daily prac- 

ice). Moreover, importantly, the study lacks external validation. 

Another challenge is considering latent bias, that is biases wait- 

ng to happen even in fair models [55] . Adaptative models can 

ecome biased over time or according to change in the context, 

isproportionately benefiting individuals who already experience 

rivilege or missing the interests of individual patients or the 
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Table 2 

Overall assessment of the risk of bias according to the PROBAST tool for a recently published prediction model for mortality in cirrhosis derived from a ML approach [54]. 

Author, year ROB Applicability Overall 

participants predictors outcome analysis participants predictors outcome ROB applicability 

Kanwal, 2020 - a + + + - b - c + – –

Footnotes 

.PROBAST = Prediction model Risk Of Bias ASsessment Tool; 

ROB = risk of bias. 

+ indicates low ROB or low concern for applicability. 

− indicates high ROB or high concern for applicability. 
a inappropriate exclusion: participants with only one instance of “Cirrhosis” in the database was excluded. 
b only patients from VA, mostly older men, were included (96.6% males, mean age 62.7). 
c the definition and timing were judged nor relevant neither potentially applicable to the daily practice as some parameters were based on ICD9 codes and laboratory data 

were extracted within 1 year before and closest to the index date. 

Fig. 3. Example of mortality risk diagram from 1 to 8 years for a simulated patient according to a prediction rule based on ML and refitted by a logistic analysis [ref], cal- 

culated at http://cimm.herokuapp.com/main . The graph represents the expected death risk for a cirrhotic patient 55 years old with history of chronic obstructive pulmonary 

disease, non-African American ethnicity, Na 133 mEq/L, bilirubin 2.4 mg/dl, 151 platelets /nL, hemoglobin 8.8 g/dL, AST/ALT ratio > 2, no encephalopathy, with ascites, no HCC. 
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ommunity. Addressing latent bias in AI algorithms should be seen 

s a patient safety issue proactively evaluated and monitored over 

ime. 

. Potential impact of deep learning in modeling cirrhosis 

DL may disclose more granularity in the course of cirrhosis 

hrough the sophisticated analyses of the huge amount of ex- 

lorable data which was inaccessible until the recent past. Areas 

f the clinical course of cACLD where DL might provide impor- 

ant contribute are the disease progression and relevant risk in- 

icators in the stage of MPH, the incidence of AD, ACLF and fur- 

her decompensation. The best time for liver transplantation could 

e re-defined if new and more efficient prognostic tools than the 

ELD would be detected. The definition of decompensation per se, 

ight be updated, being currently based on clinical signs while the 

ole of liver function measures should be explored either as part 

f the definition or as predictors. Even the paradigm of decom- 

ensation as the most important risk stratifying feature might be 

bandoned if more efficacious indicators of disease progression are 

isclosed. 

Several studies using DL techniques have proposed new predic- 

ive scores [56–66] , although no clinical practice changing conclu- 

ions have been reached. One major obstacle in the application of 
710 
L based scores is that the complexity of covariate weighting in 

idden layers, results in a sort of “black box” which may make 

he new models hard to understand for clinicians and patients. To 

vercome this “blindness” to such complex prediction tools, the 

ovariate weights derived by DL algorithms should be converted 

n simpler, clinically explainable risk scores thus optimizing the 

rade-off between accuracy and interpretability and also making 

ubsequent implementation easy. This approach has been explored 

n a very large database from the Veterans Administration, includ- 

ng 107,939 patients with cirrhosis [54] . The predictors identified in 

he most parsimonious model of the 3 ML algorithms used, were 

efit using maximum-likelihood discrete time-to-event logistic re- 

ression estimation. The beta coefficient per each significant pa- 

ameter detected by the more complex ML model, were then used 

o calculate individual risks and an online risk calculator has been 

ade available ( Fig. 3 ). 

ML may also provide more insight in treatment effect if treat- 

ent is included among candidate predictors. The analysis context 

ecalls that of observational studies of treatment effects by propen- 

ity score matching [67] . The technique is based on the compu- 

ation of counterfactual outcomes which consists in predicting the 

ndividual patient outcome should he or she had received the al- 

ernative treatment [68] . In this way cohorts of comparable indi- 

iduals treated with two alternative treatments are generated and 

http://cimm.herokuapp.com/main
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reatment benefit may be computed and used in individual patient 

reatment decision making. 

. Machine learning limitations and challenges 

A major issue with ML algorithms is that they tend to overfit 

ata of specific training dataset, which may diminish the gener- 

lizability of the model. Control for overfitting and optimism re- 

uires a specific “tuning” step where some most important param- 

ters ( hyperparameters ) are adjusted (tuned) in a separate “tuning 

et” different from the training set [45] . Moreover, the learning 

hase of the model ( training ) strictly depends on the type of input 

he model is given. If the input has not been predefined based on 

ome strong and plausible hypothesis on biology, pathophysiology, 

r clinical grounds appropriate to answer specific relevant ques- 

ions, the algorithm may lead to distorted conclusions [46] . More- 

ver, certain patient subgroups may be disregarded depending on 

he structure of the training set and/or data missingness. 

Application of ML algorithms in clinical practice will be chal- 

enging because of several inherent unsolved issues. A first consid- 

ration is that there is not yet a satisfactory validation methodol- 

gy for the predicted effects on health outcomes. Given the com- 

lexity of big data, available studies have claimed validity mostly 

ased on a split sample technique either temporal or randomised 

54] : these methods are however internal validation tools, while 

xternal validation should be performed in a similar big dataset 

ollected in a different place. While waiting for a specific ML mod- 

ls validation methodology, traditional validation methods should 

e adopted [69] with validation samples observed in sites and in- 

luding patients different than the training and tuning sets [45] . 

alidation may not be disregarded because while ML algorithms 

ay be capable to uncover hidden features successfully applicable 

o small groups of patients, they may likewise provide spurious 

ssociations which require skilled judgement to be identified. DL 

odels should be reported according to the Transparent Report- 

ng of a multivariable prediction model for Individual Prognosis Or 

iagnosis (TRIPOD) statement [70] . 

Another issue regards the vast areas of medicine uncertainty 

ike interobserver variability, gray zone in diagnostic or outcome 

ssessments. Such issues will be part of the information on which 

he learning phase of the ML process is based and will result in 

nintended erroneous conclusions, which may remain undetected 

t least for a while [46] . 

These limitations may be at least in part overcome adopting the 

traditional ” methods for ML based prognosis research whose chal- 

enge would be to answer “Yes” to all the PROBAST ROB signal- 

ng questions. Furthermore, the PROBAST tool, even if developed on 

he background of non-AI based research, can be tailored by adding 

dditional specific signaling questions. As an example, model as- 

essment should account for tuning sample and adjustment of hy- 

erparameters and internal validity should be assessed in a sepa- 

ate participant sample, different from the training and the tuning 

amples. Other fields requiring specific methodology for assessing 

OB might be participant selection criteria and predictors defini- 

ion, that in registers need to be based on a coding system (mostly 

CD9) and may have not been properly validated for the specific 

se relevant for a given study. Yet, any ROB assessment tool for 

I, and specifically for ML based decision rules, should account for 

he quality of input data and consecutivity of included participants, 

mong other specific issues. 

Regarding the potential benefit of the application of AI in clini- 

al practice it is also to be noted that no comparative studies have 

et shown the effectiveness of machine learning–based decision 

upport systems. Moreover, an important issue is represented by 

he implementation gap between machine learning and healthcare 

n spite of the level of AI performance often exceeding that of hu- 
711 
an clinicians. To overcome this problem and to allow that ma- 

hine learning can add value in a real-world clinical environment, 

ctionability (i.e. output linked to some intervention), safety (in- 

luding also the evidence of efficacy in a real-world setting) and 

ost utility assessment have been proposed as more practical as- 

ects to be considered and added to these sophisticated models 

71] . 

. Conclusions 

AI is a most appealing technology for medical application, ex- 

ected to provide potent support tools for clinical decision mak- 

ng. However, great efforts must be done to ensure transparency 

f the modeling process and to detect and overcome any hidden 

itfall that may result in harm for the patients. Development of 

pecific quality and performance metrics would be appropriate to 

nsure reliability and generalizability of DL developed clinical de- 

ision tools. 
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