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ABSTRACT

The use of artificial intelligence is rapidly increasing in medicine to support clinical decision making
mostly through diagnostic and prediction models. Such models derive from huge databases (big data) in-
cluding a large variety of health-related individual patient data (input) and the corresponding diagnosis
and/or outcome (labels). Various types of algorithms (e.g. neural networks) based on powerful computa-
tional ability (machine), allow to detect the relationship between input and labels (learning). More com-
plex algorithms, like recurrent neural network can learn from previous as well as actual input (deep learn-
ing) and are used for more complex tasks like imaging analysis and personalized (bespoke) medicine. The
prompt availability of big data makes that artificial intelligence can provide rapid answers to questions
that would require years of traditional clinical research. It may therefore be a key tool to overcome sev-
eral major gaps in the model of advanced chronic liver disease, mostly transition from mild to clinically
significant portal hypertension, the impact of acute decompensation and the role of further decompen-
sation and treatment efficiency. However, several limitations of artificial intelligence should be overcome
before its application in clinical practice. Assessment of the risk of bias, understandability of the black
boxes developing the models and models’ validation are the most important areas deserving clarification
for artificial intelligence to be widely accepted from physicians and patients.

© 2022 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The continuous increase in the use of Electronic Health Records

tient selection, attrition, blindness, and outcome assessment) may
be adequately controlled.
Technological evolution in the field of computing and data stor-

(EHR) is providing large clinical databases which make it possible
to quickly investigate the relations between the different types of
information they contain and different types of conditions or out-
comes. The study of these relations has identified a specific re-
search area based on EHR. The interest in this type of research
is steadily increasing because of the prompt availability of very
large patient samples including baseline and follow-up character-
istics, time to relevant clinical events and outcomes. Therefore,
these studies may answer important research questions in much
less time and at much less cost than prospective studies, provided
that the risk of bias common in retrospective studies (mostly pa-
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age allows the formation of huge databases (big data) including any
type of data produced in clinical practice spanning from genome
sequencing to high resolution imaging, clinical history, laboratory
data, vital function monitoring, sequential clinical characteristics,
treatments, time to relevant clinical events, mortality, and many
others. The availability of such types of information in large patient
populations is also rising the interest towards clinical research in
the field of personalized clinical management, using artificial intel-
ligence (AI) [1].

The terms Machine Learning (ML) and Deep Learning (DL) are
used with reference to two different levels of complexity of Al with
DL being the most complex. There is not a clearcut definition for
the two terms neither a clear boundary separating them. ML may
be thought about as a tool able to produce a decision rule directly
from data, without any (human) predefined behavior [2,3]. As an
example of human predefined behavior for a computer derived
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prediction tool, the MELD score [4,5] was derived by a Cox regres-
sion analysis including few variables: both the type of analysis and
the variables were selected by physicians in a limited patient sam-
ple. The so-called machine learning spectrum begins where human
specification of a predictive algorithm’s rules becomes so complex
to be too hard to manage, although no precise limit separates “hu-
man” models from machine learning.

Deep learning is based on highly complex technologies result-
ing in dynamic learning algorithms and has been proposed in re-
cent years for diagnostic models from imaging analysis and for
prediction models [1,2].

A measure of the growing interest for Al in medicine is pro-
vided by the great increase in the number of publications with the
terms “artificial intelligence” or “machine learning” or “deep learn-
ing” in the title, indexed in PubMed from 126 in 2010 to 11,914 in
March 2022.

DL may help improving knowledge of the clinical course of dis-
eases and its predictability resulting in valid support to decision
making particularly for individualized (bespoke) medicine [6-8].
The potential applicability of DL algorithms in modeling the clini-
cal course of cirrhosis will be summarized here by exploring areas
where knowledge is still insufficient and where DL may have sub-
stantial impact.

2. Major gaps in the knowledge of the course of cirrhosis and
its predictability

In its initial stage, cirrhosis is characterized by a silent course
and may remain underdiagnosed for many years. This stage of
the disease, termed compensated is associated with a median sur-
vival of > 12 years [9]. When symptoms of disease progression
become clinically overt, the expected median survival is reduced
to 2-4 years [10,11], with a poor quality of life, need of med-
ications and frequent hospitalizations. This is the decompensated
stage and is defined by the occurrence of one or more of the ma-
jor clinical manifestations of the disease: ascites, bleeding, hepatic
encephalopathy, or jaundice. Almost all the patients with cirrho-
sis who die because of cirrhosis develop decompensation before
death, with a small proportion dying at first decompensation while
death before decompensation, for unrelated causes, is rare.

The incidence of decompensation is in the order of 5-7% [11,12]
per year and depends on the severity of portal hypertension [13].
In fact, decompensation and development of gastro-esophageal
varices almost exclusively occur in patients with hepatic vein por-
tal gradient (HVPG) >10 mmHg, the threshold for clinically signif-
icant portal hypertension (CSPH). Among patients with CSPH the
risk of decompensation is highest in those with esophago-gastric
varices [13,14]. Patients with HVPG <10 and >6 mmHg have mild
portal hypertension (MPH) and their risk of disease progression is
the lowest, although the risk size is not yet well established.

In the last decade, non-invasive tests for fibrosis and/or por-
tal hypertension [15], mostly the aspartate aminotransferase to
platelet ratio (APRI), fibrosis-4 index (Fib-4) [16] and liver stiff-
ness measurement (LSM), measured by liver transient elastography
(TE) [17] allowed to expand the concept of liver cirrhosis to that
of compensated advanced chronic liver disease (cACLD), which in-
cludes cirrhosis and chronic liver disease with advanced fibrosis at
risk of decompensation even without biopsy [15]. Moreover, non-
invasive tests accurately predict the risk of disease progression and
mortality in cACLD [16]. LSM>15 kPa identifies patients with cA-
CLD (sensitivity 91%, specificity 95%) [18] and LSM>25 identifies
those with CSPH (sensitivity and specificity >85%) [19]. Moreover,
the combination of LSM<20 kPa and platelets count>150 x 10%/L
rules out the presence of esophagogastric varices needing treat-
ment for the prevention of variceal bleeding with a sensitivity
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>95%, thus allowing a significant reduction in the indication to en-
doscopic screening for varices [20].

Therefore, the introduction of NITs, and particularly LSM, and
of the concept of cACLD in clinical practice have substantially re-
duced the need for liver biopsy and/or HVPG measurement to risk
stratify patients, making clinical decisions much easier and more
straightforward in cACLD patients. This is particularly important
because CSPH is a cornerstone in the clinical course of the disease.
It is associated with a hyperdynamic circulatory syndrome, mostly
in response to the splanchnic vasodilatation induced by increasing
portal pressure. Parallel to the hyperdynamic circulation, bacterial
translocation activates an inflammatory response resulting in pro-
gressive immune-dysfunction and reduced resistance against infec-
tions [21,22]. Increasing inflammatory activation causes further va-
sodilation and increase in cardiac output up to a degree where no
further compensating mechanisms are possible and hemodynamic
dysfunction occurs [23].

Decompensation has been considered for decades as the occur-
rence of one or more decompensating event independent of the
modality of presentation [24,25]. In the last decade acute decom-
pensation (AD) has been introduced as a peculiar modality of de-
compensation defined by the acute development of one or more
major complications: first or recurrent grade 2 or 3 ascites within
less than two weeks, first or recurrent acute hepatic encephalopa-
thy in patients with previous normal consciousness, acute gastroin-
testinal bleeding, and any type of acute bacterial infection [26,27].
The worst expression of AD is acute on chronic liver failure (ACLF)
characterized by the development of organ failures among liver,
kidney, brain, circulation, coagulation, and lung. The major driver
of AD is credited to be systemic inflammation with several stud-
ies showing significant increase of inflammatory markers as white
blood cell count, C reactive protein or circulating levels of pro-
inflammatory cytokines [28,29]. Moreover, the intensity and sta-
bility of the inflammatory activation has been reported to allow
risk stratification of patients with AD [27]. However, whether in-
flammation is the cause or a consequence of the decompensating
event, is not yet clearly defined.

There are several major issues to be clarified in the concept of
AD before it is adopted to risk stratify patients in clinical practice.
The first is that the reproducibility of the definition is not known.
In fact, any information on AD has been drawn from patients hos-
pitalized for decompensation with criteria for AD assessed post-
hoc [26,30] and reproducibility of the criteria for hospitalization
never investigated. A second major issue is that the incidence
of AD is unknown, while the only available study on the inci-
dence of ACLF reported that it was approximately 2.5/100 patient-
years in outpatients with compensated cirrhosis [31]. Therefore,
beyond the uncertainty on the applicability of the definition of
AD, no measure is available on the impact of AD in the course of
cirrhosis.

Following decompensation, disease progression may occur
through further decompensation, which is associated with further
reduction of expected survival and recognized by consensus [17] as
a more advanced disease stage. Further decompensation is defined
as (a) the occurrence of any of ascites, variceal hemorrhage, hep-
atic encephalopathy, or jaundice in a patient already decompen-
sated, (b) recurrent variceal bleeding or encephalopathy or spon-
taneous bacterial peritonitis (SBP) or hepatorenal syndrome-acute
kidney injury (HRS-AKI) or (c) occurrence of ascites, encephalopa-
thy, or jaundice after recovery from bleeding but not if these
events occur around the time of bleeding. In a still unpublished
large multicentre study from Europe and Argentina including more
than 2500 patients [17], it has been estimated that the develop-
ment of further decompensation is associated with a sub hazard
ratio of 1.47 (95%ClI 1.26-1.72, OLT competing) in patients with a
previous decompensation.
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Fig. 1. Schematic representation of the model of cirrhosis. Non-Acute or Acute events cause transition from compensated to decompensated cirrhosis. Further decompensa-
tion is a next stage before the final outcomes, death, or liver transplant. The question marks represent areas where Deep Learning (DL) may improve present day knowledge.
Abbreviations: pH = portal hypertension; CSPH = clinically significant portal hypertension; AD = acute decompensation; NAD = non acute decompensation; HE = hepatic
encephalopathy; ACLF = acute on chronic liver failure; UDC = unstable decompensated cirrhosis; SDC = stable decompensated cirrhosis; deco= decompensating event;

OLT = orthotopic liver transplant.

Etiological treatments in compensated cirrhosis may delay or
prevent decompensation through the reduction of fibrosis conse-
quent to the removal of the etiologic factor (either virus, or al-
cohol or obesity and metabolic alterations) [32-35], and reduc-
tion of portal hypertension up to reversion of cirrhosis [36-38],
while in early decompensation it may achieve recompensation
[39-42].

In summary, compensated cirrhosis progresses from an early
stage of MPH to CSPH with or without esophago-gastric varices;
transition to decompensation occurs through a non-acute or an
acute event and first decompensation is followed by further de-
compensation. Death or OLT are the final outcomes. The course
may be relented or reversed by etiological treatment.

A schematic representation of the course of cirrhosis is shown
in Fig. 1. The major areas where we need to improve our knowl-
edge for clinically sound decision making are the transition from
MPH to CSPH, the intensity and modality of disease progression
from CSPH, the impact of AD and ACLF and finally the impact of
etiological treatments on recompensation.

How deep learning may substantially contribute to fill these
gaps together with the relevant risk of bias will be discussed in
the two next paragraphs.

3. Basic concepts of machine learning and its applicability in
clinical practice

Al uses algorithms designed to adsorb information from large
volume medical data and find out their relationship with a de-
fined condition (disease or disease stage) or outcome (time to clin-
ical events or death) to assist clinical practice. These algorithms
also include self-updating instructions to improve accuracy based
on regular feedback input, thereby reducing clinical error, and of-
fering a potential for real-time diagnostic and prognostic infer-
ences [1]. A very large variety of medical data are used for Al in
medicine, encompassing screening, diagnosis, laboratory, imaging,
histology, treatment, instrumental monitoring recording, data up-
date along time, follow-up events, and outcome [43]. Special tech-
niques [44] have also been developed to convert unstructured clin-
ical notes (natural language processing) and intervention reports,
to machine usable data.

In general, Al is a data computing approach to produce auto-
mated systems that can perform complex tasks accounting for a
wide range of data combinations using several families of comput-
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ing technologies. One type of these technologies, based on power-
ful computational ability (machine), is aimed to find relationships
between the acquired data (learning) and has been termed machine
learning (ML) [43].

Algorithms used in ML are subdivided in “unsupervised” and
“supervised” learning, according to whether they are aimed at dis-
ease characterization/diagnosis based on patient features, or at pre-
dicting outcome through identification of some relationship be-
tween patient characteristics and outcome. In supervised algo-
rithms, data are labelled according to their clinical interpretation
(e.g., disease or outcome present/absent). In unsupervised models
data are not labelled, and the algorithm classifies them according
to common characteristics derived by specific mathematical pro-
cesses [45]. The most widely used algorithms in ML are reported
in Box 1.

Support Vector Machine (SVM) and Neural Networks (NN) are
the most widely used supervised learning algorithms used in med-
ical applications [1].

SVM is based on the weights to be attributed to patient charac-
teristics to identify two groups of patients according to a relevant
outcome variable and a decision boundary. The analysis algorithm
is aimed at achieving the smallest classification error.

NN may be thought about as an extension of linear regression
to capture non-linear relationships between baseline features (in-
put variables) and an outcome of interest (label). In NN, the as-
sociations between the input variables and labels are represented
through combinations of pre-specified functional arguments in a
hidden layer unapparent in clinical practice because they may be
hidden in the massive amount of data. In fact, the weights of the
associations between the input variables and the output are ad-
justed at any transition across such hidden layers, aiming at mini-
mizing the prediction error (Fig. 2, left side).

Deep learning may be considered as a modern extension of the
classical neural network technique and may be envisioned as a
neural network with many more layers to detect more complex
non-linear relationships between patient features and the outcome
of interest. It is essentially the process of training a NN to perform
a given task. Recurrent neural network (RNN) for clinical tasks
and Convolutional Neural networks (CNN) for imaging analysis are
among the most used techniques for medical applications of DL
[45]. What increases RNN precision in identifying disease patterns
or in making predictions is the fact that it does not take into con-
sideration just the actual input but also the previous input which
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Major Machine Learning development algorithms.
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Model Characteristics

Regression (linear, logistic)
Regularized regression

Decision tree

Random forest

Support Vector Machine (SVM)
Nearest neighbor

Neural Network (NN)

Recurrent Neural Network (RNN)

Multiple decision trees

Identifies relationships between input data and output (e.g., diagnosis or outcome)
Incorporates techniques to avoid overfitting in regression models
Classification based on splitting values of input variables, similar to a clinical algorithm

Discriminates groups of patients according to patient characteristics and to a decision boundary
Produces predictions based on similar conditions in the training sample

Many hidden layers used to detect more complex non-linear relationships

Accounts for previous as well as for actual input.

Uses artificial neurons with self-connections to process input sequences of arbitrary length.

Convolutional Neural Networks (CNN)

Neural network with nodes designed to resemble visual

Cortices. Uses hierarchical layers of pattern detectors (artificial neurons) to detect patterns in the data

Deep Neural Networks

Multiple layers between the input and output layers

Hidden
Jayer

Input

Output | model |

Neural Network

\J

Hidden layers.

output I model |

Recurrent Neural Network

Fig. 2. Schematic representation of a neural network and recurrent neural network process through hidden layers [1].

allows it to memorize what happened previously and to adjust
the covariate weights accordingly (Fig. 2, right side). Therefore, the
algorithm is recursively repeated, and estimates adjusted at each
new input [1].

The efficiency of DL critically depends on the training (learning)
process. In fact, when the training dataset is not enough various or
if it bears some inadvertent bias, the algorithm performance may
be unsatisfactory [46]. DL algorithms are particularly suitable for
complex and highly dimensional data and are mostly used in the
field of diagnostic imaging, although in the last few years they are
increasingly used in survival modeling.

4. Assessing the quality of machine learning prediction models
studies

A careful assessment of the quality of prediction models is
needed considering their proliferation and their largely inconsis-
tent results [45,47]. For this purpose, it is suggested using PROBAST
(Prediction Model Risk Of Bias ASsessment Tool), a tool designed to
assess risk of bias and applicability in studies developing, validat-
ing, or updating prediction models [48].
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According to the PROBAST tool, quality depends on flaws in de-
sign, conduct and analysis (i.e., risk of bias) of the study and on its
applicability (i.e., the extent to which primary studies are applica-
ble to the clinical question). The quality is assessed exploring four
domains with 20 signaling questions (Table 1). Answers to each
question are reported as yes/probably yes, no/probably no, no in-
formation [48]. Per each domain the ROB may be considered low
if the answer to all signaling questions is “Yes” or “Probably yes”.
If >1 answer is “No” or “Probably no” the risk may still be judged
low if specific reasons are provided supporting low risk. A high
ROB should be assigned when >1 of the answers is” No” or “Prob-
ably no” in the lack of a plausible explanation minimizing the risk
of bias. ROB is rated as unclear when the relevant information is
missing, and the relevant argument is not judged to confer a high
risk of bias.

In the first domain, patients’ selection, two signaling questions
aim to evaluate appropriateness of data source and in/exclusion
criteria. Prospective cohorts, randomized clinical trials, and nested
case-control studies are considered appropriate data sources. Case-
control studies are judged at high risk of bias. Routine care
registries, the data source of most ML studies, are regarded as
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Table 1
PROBAST (Prediction model risk of bias assessment tool)? with example'.

Domains

1. Participants
Type of potential bias
Selection of participants

2. Predictors

Predictors or their assessment

3. Outcome

Outcome or its determination

4. Analysis

Analysis

Signaling questions

1.1. Were data sources appropriate (cohort, RCT, or
nested case-control study data)?

[probably yes]: retrospective inclusion from available
database

1.2. Were inclusion/exclusion criteria appropriate?

[probably ne]: “Our cohort included patients with
cirrhosis who were seen in ambulatory clinics at 130 VA

hospitals from October 1, 2011, to September 30, 2015.We

included patients if they had at least 2 instances of
cirrhosis ....... ”. Patients with at least 2 instances of
diagnosis of Cirrhosis were included. We considered
the exclusion of patients with only one instance of
Cirrhosis as inappropriate

Applicability

Do included participants and setting match the
question of interest?

[No]: only patients from VA and most were older
men: 96.6% males, mean age 62.7.

2.1. Were definitions of predictors similar for all participants?

[yes]

2.2. Were predictor assessments blind to outcome?

[yes]

2.3. Are all predictors available at the time prediction is made?

[yes.]

Do definition, assessment, and timing of predictors match the
question of interest?

[no]. “ICD9 and drug class codes used to define predictor variables.
We extracted data for serum levels of bilirubin, sodium, and creatinine
and international normalized ratio performed within 1 year before and
closest to the index date”

We judged the definition and timing of predictors nor relevant
nor potentially applicable to the daily practice

3.1. Was the outcome appropriate?

[ves]: “we obtained all-cause mortality data from VA
Vital Status File that combines information from the
VA Death File, VA Compensation and Pension
Benefits, Medicare, and Social Security and has a
sensitivity of 98.3% and specificity of 99.8%relative to
the National Death Index”

3.2. Was the outcome definition prespecified or
standard definition used?

[ves]

3.3. Were predictors excluded from the outcome
definition?
[ves]

3.4. Were the outcome definition and assessment
similar for all participants?

[yes]

3.5. Was the outcome assessment blind to
predictors information?

[yes]

3.6. Was there an appropriate time interval
between predictor assessment and outcome?

[yes]

Do outcome definition, timing, and assessment
match the question of interest
[yes]

4.1. Were there a reasonable number of outcomes
observed?
[ves]

4.2. Were continuous and categorical predictors
handled appropriately?
[yes]

4.3. Were all enrolled participants included in the
analysis?

[probably yes]: “Few laboratory values were missing in
more than 5% of patients”

4.4. Were missing data handled appropriately?

[yes]

4.5. Was univariable analysis avoided for predictors
selection?

[yes]

4.6. Were complexities in the data (e.g., censoring,
competing risks, sampling of control participants)
accounted for appropriately?

[probably yes]|

4.7. Was model assessed appropriately?

[yes]

4.8. Were model overfitting, underfitting, and
optimism in model performance accounted for?
[ves]

4.9. Do predictors and their assigned weights in the
final model correspond to the results from the
reported multivariable analysis?

[ves]

9 modified from Table 2 in ref (Wolff 2019, Ann Int Med).
t shadowed lines report ROB assessment for reference [54] as an example of PROBAST useRCT = randomized controlled trial.
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longitudinal cohorts and might be considered at high risk of bias
when inclusion and exclusion criteria do not ensure inclusion of
consecutively observed patients with the disease of interest.

The second domain concerns predictors. First, predictors should
be defined and assessed in a similar way for all participants, espe-
cially if subjective judgment is required, such as imaging test re-
sults, as different definitions and measurements can result in bi-
ased estimate of their association with the outcome. Second, the
assessment of the predictors should be made without knowledge
(blinding) of the outcome. This bias is likely to occur in retrospec-
tive studies where the outcome is already known when predictors
are assessed, while it may not occur in prospective studies, where
the predictors are assessed before outcome verification. Third, the
model should not include predictors that could not be known at
the time when the model would be used. For example, to predict
the risk of bleeding, using non-invasive tests in an outpatient set-
ting, a model should not include endoscopic assessment of varices
and their characteristics, as these data would be unavailable at
time of outpatient visit.

The third domain explores outcome. Outcome definition may
include a single (or a combination of) procedure/s or clinical judge-
ment/s. Bias can occur when methods used to assess outcomes in-
correctly classify participants with or without the outcome. First,
the appropriateness of outcome assessment should be checked.
Especially in routine-care registries, outcome might be assessed
with suboptimal methods. Second, a prespecified or standard out-
come definition should be used. Selection of an outcome defini-
tion, associated with more favorable results, may indeed overes-
timate the model accuracy. Third, outcomes should be assessed
without information provided by predictors. If a predictor is in-
cluded in the assessment of the outcome, a biased association be-
tween that predictor and the outcome is likely to be obtained (in-
corporation bias). Fourth, the outcome should be defined and as-
sessed in the same manner for all study participants. The risk of
bias is high when different methods are used for outcome defi-
nition (e.g., if the outcome is hepatocellular carcinoma, it may be
assessed by imaging techniques, such as computer tomography or
magnetic resonance or by histology of biopsy or resected spec-
imen). The outcome should be determined without information
about predictors. Knowing predictor results may influence outcome
assessment and lead to biased predictive accuracy of the model,
usually due to overestimation of the association between predic-
tors and outcome. For objective outcomes (e.g. all-cause mortality)
blinding is less relevant [49]. Sixth, the time interval between pre-
dictor assessment and outcome determination should be appropri-
ate. In some cases, the time interval may be too short to capture
the outcome of interest or too long, affecting the outcome defini-
tion.

The fourth domain evaluates whether appropriate analysis
methods were used. First, an evaluation of the sample size and
judgment of its appropriateness are required. Generally, the larger
the sample size, the better. However, for prediction model studies,
the number of participants with the outcome is even more im-
portant than the overall sample size. The number of participants
with the outcome not only influences precision but is a potential
source of bias. One of the major issues in prognostic modeling is
overfitting. Usually, sample size calculations for prognostic mod-
els are based on the number of events per variable (EPV), con-
sidering the total number of predictors assessed during any stage
of the prediction model process, not only those included in the
final model. Prediction models developed using machine-learning
techniques require a number of EPVS substantially higher (often >
200) than traditional studies to minimize overfitting [50]. Second,
dichotomizing continuous predictors may introduce a bias, espe-
cially when the cut-off is derived from the same dataset. In gen-
eral, dichotomization should be avoided as it leads to loss of in-
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formation, and an impaired predictive ability [51]. Anyway, clini-
cally meaningful cut-off should be chosen when dichotomization
is considered crucial. Third, all enrolled participants should be in-
cluded in the analysis. For example, excluding participants whose
predictor values were unclear (e.g., unevaluable results on imag-
ing tests) may produce biased and overestimated accuracy [52]. In
general, when the proportion of study participants excluded from
the analysis is high the results are at high risk of bias. Fourth, par-
ticipants with missing data should be appropriately handled, e.g.,
with by multiple imputation methods that are supposed to provide
the least biased results. However, similarly to the patients excluded
from the analysis, the risk of bias increases with a growing per-
centage of missing data, and the maximum acceptable percentage
is hardly defined. Fifth, selection of predictors algorithms based on
univariate analysis should be avoided. In many studies researchers
perform a two-step analysis: a univariate analysis including all pre-
defined predictors followed by a multivariate analysis where only
the predictors with a statistically significant association (usually P
< 0.05) at the univariate stage are included. Well-established pre-
dictors and those with clinical credibility should be included and
retained in a prediction model regardless of any statistical signif-
icance. Any selection, based on statistical significance of a single
predictor, might introduce bias by excluding important variables.
Accordingly, a selection of potential predictors based on nonstatis-
tical considerations should be preferred. Methods based on an a
priori approach for selection of predictors are in fact considered
at low risk of bias. Sixth, complexities in the data (e.g., censor-
ing, competing risks) and underlying assumptions should properly
be accounted for [53]. Seventh, both model calibration (comparing
expected and actual values, i.e. model predicted probabilities and
proportions of participants) and discrimination (c-index) address-
ing the entire range of the model-predicted probabilities should be
appropriately evaluated and reported. Of note, ML algorithms re-
quire two data sets for the development stage: a training set, from
which to learn parameters, and a tuning set, to adjust hyperpa-
rameters (i.e., the parameters, established before model training,
that remain fixed through the training process) to avoid optimism.
The model calibration and discrimination must be assessed in a
third independent patients’ sample (validation sample) to avoid
optimistic estimates. Eighth, model overfitting and optimism in
model performance should be properly considered. In ML studies,
where the large sample size and EPV reduce overfitting, optimism
is usually managed by adjusting hyperparameters in the tuning
set. Nineth, the predictors, and their assigned weights in the final
model should correspond to the results from the reported multi-
variable analysis.

Applicability is explored according to the domains of patients
selection, predictors and outcome and depends, respectively on the
matching of the included participants with the participants defined
and specified by the clinical question, and on relevance and usabil-
ity of predictors and outcome measurements in daily practice.

Eventually, ML prediction models, just as any other, need ex-
ternal validation in independent datasets obtained from different
locations [45,47,48].

To illustrate the use of the PROBAST tool we show the ROB as-
sessment of a recent study aiming to predict cirrhosis mortality
[54] (Tables 1, 2). In this study we found concerns in exclusion
criteria (selection domain) and in applicability (only older males
were included and the definition of predictors and timing of their
assessment seems not appropriate neither applicable to daily prac-
tice). Moreover, importantly, the study lacks external validation.

Another challenge is considering latent bias, that is biases wait-
ing to happen even in fair models [55]. Adaptative models can
become biased over time or according to change in the context,
disproportionately benefiting individuals who already experience
privilege or missing the interests of individual patients or the
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gav];l:allz assessment of the risk of bias according to the PROBAST tool for a recently published prediction model for mortality in cirrhosis derived from a ML approach [54].
Author, year ROB Applicability Overall
participants predictors outcome analysis participants predictors outcome ROB applicability
Kanwal, 2020 -2 + + + b - + _ _
Footnotes

.PROBAST = Prediction model Risk Of Bias ASsessment Tool;
ROB = risk of bias.
+ indicates low ROB or low concern for applicability.
— indicates high ROB or high concern for applicability.
2 inappropriate exclusion: participants with only one instance of “Cirrhosis” in the database was excluded.
b only patients from VA, mostly older men, were included (96.6% males, mean age 62.7).
¢ the definition and timing were judged nor relevant neither potentially applicable to the daily practice as some parameters were based on ICD9 codes and laboratory data
were extracted within 1 year before and closest to the index date.

Cirrhosis Mortality Model Risk Profiling
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Fig. 3. Example of mortality risk diagram from 1 to 8 years for a simulated patient according to a prediction rule based on ML and refitted by a logistic analysis [ref], cal-
culated at http://cimm.herokuapp.com/main. The graph represents the expected death risk for a cirrhotic patient 55 years old with history of chronic obstructive pulmonary
disease, non-African American ethnicity, Na 133 mEq/L, bilirubin 2.4 mg/dl, 151 platelets /nL, hemoglobin 8.8 g/dL, AST/ALT ratio>2, no encephalopathy, with ascites, no HCC.

community. Addressing latent bias in Al algorithms should be seen DL based scores is that the complexity of covariate weighting in
as a patient safety issue proactively evaluated and monitored over hidden layers, results in a sort of “black box” which may make

time. the new models hard to understand for clinicians and patients. To
overcome this “blindness” to such complex prediction tools, the
5. Potential impact of deep learning in modeling cirrhosis covariate weights derived by DL algorithms should be converted

in simpler, clinically explainable risk scores thus optimizing the

DL may disclose more granularity in the course of cirrhosis trade-off between accuracy and interpretability and also making
through the sophisticated analyses of the huge amount of ex- subsequent implementation easy. This approach has been explored
plorable data which was inaccessible until the recent past. Areas in a very large database from the Veterans Administration, includ-
of the clinical course of cACLD where DL might provide impor- ing 107,939 patients with cirrhosis [54]. The predictors identified in
tant contribute are the disease progression and relevant risk in- the most parsimonious model of the 3 ML algorithms used, were
dicators in the stage of MPH, the incidence of AD, ACLF and fur- refit using maximum-likelihood discrete time-to-event logistic re-
ther decompensation. The best time for liver transplantation could gression estimation. The beta coefficient per each significant pa-
be re-defined if new and more efficient prognostic tools than the rameter detected by the more complex ML model, were then used

MELD would be detected. The definition of decompensation per se, to calculate individual risks and an online risk calculator has been
might be updated, being currently based on clinical signs while the made available (Fig. 3).

role of liver function measures should be explored either as part ML may also provide more insight in treatment effect if treat-
of the definition or as predictors. Even the paradigm of decom- ment is included among candidate predictors. The analysis context

pensation as the most important risk stratifying feature might be recalls that of observational studies of treatment effects by propen-
abandoned if more efficacious indicators of disease progression are sity score matching [67]. The technique is based on the compu-

disclosed. tation of counterfactual outcomes which consists in predicting the
Several studies using DL techniques have proposed new predic- individual patient outcome should he or she had received the al-
tive scores [56-66], although no clinical practice changing conclu- ternative treatment [68]. In this way cohorts of comparable indi-

sions have been reached. One major obstacle in the application of viduals treated with two alternative treatments are generated and
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treatment benefit may be computed and used in individual patient
treatment decision making.

6. Machine learning limitations and challenges

A major issue with ML algorithms is that they tend to overfit
data of specific training dataset, which may diminish the gener-
alizability of the model. Control for overfitting and optimism re-
quires a specific “tuning” step where some most important param-
eters (hyperparameters) are adjusted (tuned) in a separate “tuning
set” different from the training set [45]. Moreover, the learning
phase of the model (training) strictly depends on the type of input
the model is given. If the input has not been predefined based on
some strong and plausible hypothesis on biology, pathophysiology,
or clinical grounds appropriate to answer specific relevant ques-
tions, the algorithm may lead to distorted conclusions [46]. More-
over, certain patient subgroups may be disregarded depending on
the structure of the training set and/or data missingness.

Application of ML algorithms in clinical practice will be chal-
lenging because of several inherent unsolved issues. A first consid-
eration is that there is not yet a satisfactory validation methodol-
ogy for the predicted effects on health outcomes. Given the com-
plexity of big data, available studies have claimed validity mostly
based on a split sample technique either temporal or randomised
[54]: these methods are however internal validation tools, while
external validation should be performed in a similar big dataset
collected in a different place. While waiting for a specific ML mod-
els validation methodology, traditional validation methods should
be adopted [69] with validation samples observed in sites and in-
cluding patients different than the training and tuning sets [45].
Validation may not be disregarded because while ML algorithms
may be capable to uncover hidden features successfully applicable
to small groups of patients, they may likewise provide spurious
associations which require skilled judgement to be identified. DL
models should be reported according to the Transparent Report-
ing of a multivariable prediction model for Individual Prognosis Or
Diagnosis (TRIPOD) statement [70].

Another issue regards the vast areas of medicine uncertainty
like interobserver variability, gray zone in diagnostic or outcome
assessments. Such issues will be part of the information on which
the learning phase of the ML process is based and will result in
unintended erroneous conclusions, which may remain undetected
at least for a while [46].

These limitations may be at least in part overcome adopting the
“traditional” methods for ML based prognosis research whose chal-
lenge would be to answer “Yes” to all the PROBAST ROB signal-
ing questions. Furthermore, the PROBAST tool, even if developed on
the background of non-Al based research, can be tailored by adding
additional specific signaling questions. As an example, model as-
sessment should account for tuning sample and adjustment of hy-
perparameters and internal validity should be assessed in a sepa-
rate participant sample, different from the training and the tuning
samples. Other fields requiring specific methodology for assessing
ROB might be participant selection criteria and predictors defini-
tion, that in registers need to be based on a coding system (mostly
ICD9) and may have not been properly validated for the specific
use relevant for a given study. Yet, any ROB assessment tool for
Al, and specifically for ML based decision rules, should account for
the quality of input data and consecutivity of included participants,
among other specific issues.

Regarding the potential benefit of the application of Al in clini-
cal practice it is also to be noted that no comparative studies have
yet shown the effectiveness of machine learning-based decision
support systems. Moreover, an important issue is represented by
the implementation gap between machine learning and healthcare
in spite of the level of Al performance often exceeding that of hu-
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man clinicians. To overcome this problem and to allow that ma-
chine learning can add value in a real-world clinical environment,
actionability (i.e. output linked to some intervention), safety (in-
cluding also the evidence of efficacy in a real-world setting) and
cost utility assessment have been proposed as more practical as-
pects to be considered and added to these sophisticated models
[71].

7. Conclusions

Al is a most appealing technology for medical application, ex-
pected to provide potent support tools for clinical decision mak-
ing. However, great efforts must be done to ensure transparency
of the modeling process and to detect and overcome any hidden
pitfall that may result in harm for the patients. Development of
specific quality and performance metrics would be appropriate to
ensure reliability and generalizability of DL developed clinical de-
cision tools.
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