

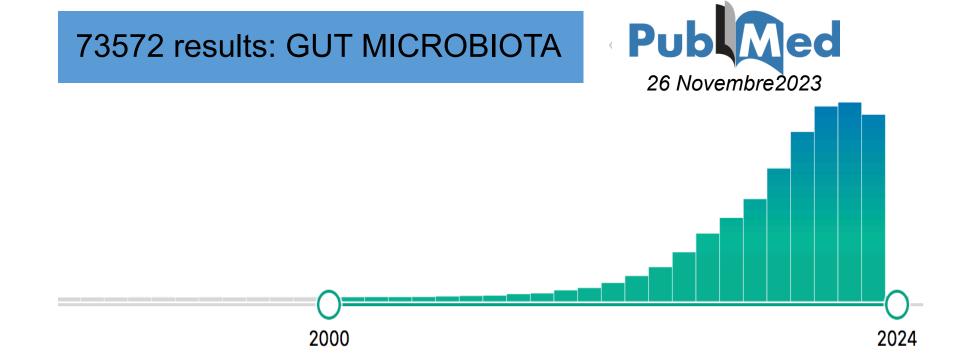
Modulare il microbiota:

dalle evidenze scientifiche alle applicazioni terapeutiche in gastroenterologia

Massimo Bellini

U.O. Gastroenterologia

Dip.Ricerca Traslazionale in Medicina e Chirurgia


Batteri, Virus, Archea, Funghi Lieviti, Protozoi, Elminti ...

Microbiota: l'insieme dei microrganismi che convivono con un organismo senza danneggiarlo, in condizione di normale funzionamento del suo sistema immunitario.

10¹⁴ Cellule batteriche

10¹³ Cellule umane

Microbioma: patrimonio genetico dei microrganismi presenti (150 volte > genoma umano)

Human gut microbiota and disease

Gut Microbiota Strains

Stomach

101 - 103 CFU/ml

Lactobacillus, Streptococcus, Staphylococcus, Enterobacteriaceae

Duodenum

101 - 103 CFU/ml

Lactobacillus, Streptococcus, Staphylococcus, Enterobacteriaceae

> Jejunum & Ileum 104 - 107 CFU/ml

Bifidobacterium. Bacterioids, Lactobacillus, Streptococcus, Enterobacteriaceae

Colon

Enterobacteriaceae

1010 - 1011 CFU/ml Bifidobacterium, Bacterioids, Eubacterium, Colostridium, Peptostreptocossus, Fusobacterium. Lactobacillus, Streptococcus, Gut-Brain Axis:

Stress, Anxiety, Depression, IBS, Schizophrenia, Cognitive Decline, Autism

Gut-Brain Endocrine Axis:

Regulatory, Metabolic, Behevioral and Hormonal Disorders

Gut-Heart Axis:

Cardiovascular Diseases, Atherosclerosis, Thrombotic events, Hypertension

Gut-Lung Axis:

Chronic Obstructive Pulmonary Disease

Gut-Liver Axis:

Liver Inflammations, Hepatocellular Carcinoma, Non-Alcoholic Fatty Liver

Gut-Pancrease Axis:

Diabetes, Pancrease cell Inflammation

Gut-Bone Axis:

Bone Demineralization, Osteoporosis

Gut-Muscle Axis:

Muscle Impairment, Frailty, Sarcopenia

Gut-Skin Axis:

Acne, Psoriasis, Atopic Dermatitis, Wrinkles, Aging

Gut-Reproductive Axis:

Infertility, Ovarian Dysfunction, Ovarian Cancer, Postmenopausal Osteoporosis

Gut-Kidney Axis:

Chronic Kidney Disease, Acute Kidney Injury/Inflammation, Nephrolithiasis, Nephropathy

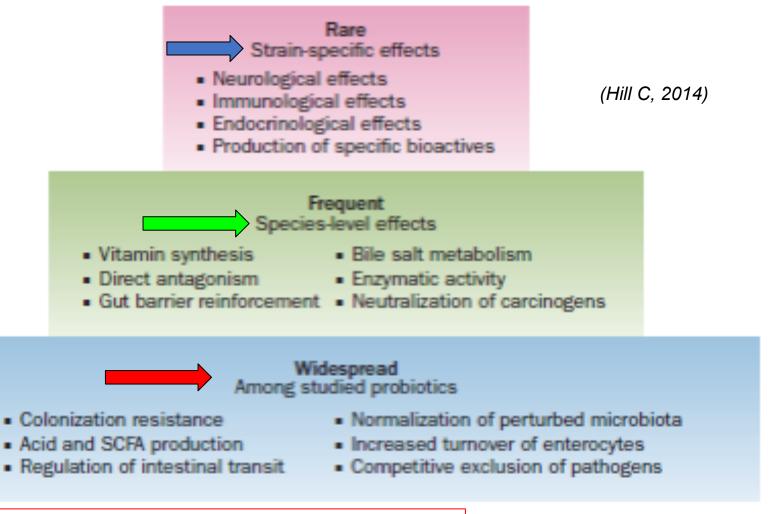
Gut-Bladder Axis:

Urinary Tract Infection, Overactive/Painfull Bladder

Microbiota plays a significant role in maintaining normal gut physiology and health.

Dysbiosis of Gut Microbiota

(Afzaal M, et al. Front Microbiol. 2022)


The gut microbiota has a lot of significant functions in human body:

- -protection from **pathogens** (colonizing mucosal surfaces and creation of antimicrobial substances)
- -enhancing the **immune system** (increasing macrophages activity)
- -playing a vital role in digestion and metabolism
- -modifying insulin resistance and affecting its secretion
- -involved in the synthesis and metabolism of bile acids and cholesterol
- -vitamin synthesis (biotin, thiamine, cobalamin, riboflavin, nicotine and pantothenic acids, vitamin B and K)
- -controlling epithelial cell proliferation and differentiation
- -influencing brain-gut communication (neutrotrasmitters synthesis, e.g. GABA
- >psychobiotics)

(LeBlanc, 2013) (Mills, 2019) (Rothschild, 2018) (Wiley, 2017) (Kelly, 2015), (Zheng, 2019), (van Leeuwenhoek, 2020)

Possible distribution of mechanisms

"No individual strain would be expected to have all the effects".

"Every strain is different and probably elicits a different outcome in the host".

Microbioma; grande diversità tra gli individui

Esseri umani:

- -uguali al 99% in termini di genoma
- -differenti sino all' 80-90% in termini di genoma del microbiota

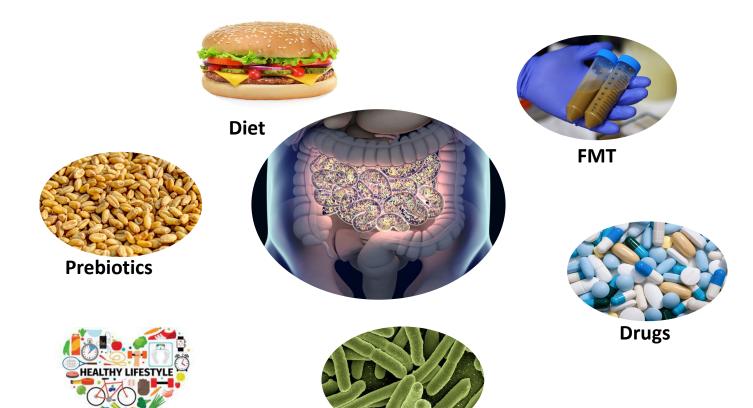
The gut microbiota evolves with the human evolution. It is also in constant and dynamic interaction with the host gastrointestinal microenvironment.

"Exploiting the variation contained within the microbiome will be much more fruitful in PERSONALIZED MEDICINE than the use of an individual patient's genetic data that targets the relatively constant host genome"

Microbioma è l'unica porzione modulabile del nostro patrimonio genetico e conferisce adattabilità alle perturbazioni e ai cambiamenti

Delivery

Breast Feeding


Lifestyle

Aging (intestinal permeability)

Pollution, Stress, Trauma

Probiotics

Exercise and associated dietary extremes impact on gut microbial diversity

Siobhan F Clarke. 1,2,3 Eileen F Murphy. 2,4 Orla O'Sullivan. Alice J Lucev. 5

REVIEW

Open Access

International Society of Sports Nutrition Position Stand: Probiotics

- La composizione del microbiota riflette il livello di attività fisica dell'ospite
- Il Microbiota di un atleta è differente rispetto a quello di un sedentario (Akkermansia muciniphila)
- Esercizio e aumentato introito proteico incrementano la diversità e la abbondanza delle specie batteriche

Interaction between drugs and the gut microbiome

Rinse K Weersma 0, 1 Alexandra Zhernakova, 2 Jingyuan Fu^{2,3}

Gut 2020; 0:1-10. doi:10.1136/gutjnl-2019-320204

Name (analogue UK)	NL% n=1124	UK% n=2737	Effect on alpha div	Effect on beta-div/prop. of core genera	Decreased taxa	Increased taxa
ACE inhibitors	3.91	11.7			s_Dorea_longicatena (1)	g_Rothia (1); g_Blautia (1)
Alpha blockers	0.89	2.73				f_Lactobacillaceae (1); g_Lactobacillus (1); f_ Veillonellaceae (1); g_Dialister (1)
Angiotensin-II-receptor antagonists (Sartan)	2.94	6.84		Yes (2)		
Antibiotics (previous month an tibiotics)	1.16	6.45	0.45*	Yes (1, 2, 3, 4)	f_Bifidobacteriaceae (1); g_Bifidobacterium (1); s_Bifidobacterium_longum (1); s_Bifidobacterium_adolescentis (1); f_Prevotellaceae (3); f_Peptococcaceae (3); f_Odoribacteraceae (3); f_Clostridiaceae (3); f_Alcaligenaceae (3); f_Anaeroplasmataceae (3); g_unclassified_Lachnospiraceae (4)	f_Enterococcaceae (3); g_Bacteroides (4); g_ Oscillibacter (4); g_unclassified_Ruminococcaceae (4)
Antihistamines (H1 inhibitor)	6.14	4.93		Yes (4)	f_Dehalobacteriaceae (3); f_Christensenellaceae (3)	s_Clostridium_bolteae (1)
Bet a blockers	5.43	7.42		Yes (1 to 2)	0	f_Streptococcaceae (1); g_Streptococcus (1); s_ Streptococcus_mutans (1); g_Rothia (1)
Calcium	125	15.7		Yes (1,2)		f_Gemellaceae (3)
Laxatives	1.87	3.19		Yes (1, 2, 4)	g_Collinsella (1); s_Collinsella_aerofaciens (1); f_Lachnospiraceae (1); s_Ruminococcus_obeum (1); g_Coprococcus (1); s_Coprococcus_catus (1); s_Coprococcus_catus (1); s_Coprococcus_comes (1); g_Dorea (1); g_Faecalibacterium (4)	s_Bifidobacterium_pseudocatenulatum (1); g_Bacteroides (1); s_Bacteroides_stercoris (1); s_ Bacteroidales_bacterium_ph8 (1); f_Enterobacteriacea (1); g_Escherichia (1); g_unclassified_Rhodospirillacea (4); g_Bacteroides (4); g_Oscillibacter (4); g_Barnesiel (4)
Metformin	133	2.9	0.9*	Yes (1, 2, 3)	s_Bacteroides_dorei (1); g_Coprococcus (1); s_Coprococcus_comes (1); g_Dorea (1); s_Dorea_longicatena (1); f_Clostridiaceae (3); f_Ruminococcaceae (3); f_Barnesiellaceae (3); f_Christensenellaceae (3)	f_Streptococcaceae (1); g_Streptococcus (1); f_Enterobacteriaceae (1,3); g_Escherichia (1); s_ Escherichia_coli (1)
Opiates (opioid)	1.16	8.58		Yes (3)	f_Dehalobacteriacee (3);	f_Streptococcaceae (3); f_Micrococcaceae (3); f_ Lactobacillaceae (3); f_Eubacteriaceae (3)
Oral contraceptives	10.1	2.61		Yes (2 to 4)		g_Rothia (1)
Paracetamol	0.98	10.6	0.6*	Yes (3)	f_Lachnospiraceae (1); g_Dorea (1); f_Christensenellaceae (3); f_ Dehalobacteriaceae (3); f_0xalobacteraceae (3)	s_Bifidobacterium_dentium (1); s_Streptococcus_ salivarius (1); f_Streptococcaceae (3); f_ Peptostreptococcaceae (3); f_Eubacteriaceae (3); f_Micrococcaceae (3);
Platelet aggregation inhibitors (aspirin)	2.85	7.83		Yes (1 to 2)	$ f_Bifidobacteriaceae~(1); g_Bifidobacterium~(1); s_Bifidobacterium_adolescent is~(1) $	g_Rothia (1); s_Bifidobacterium_dentium (1); s_Bacteroides_ovatus (1); f_Streptococcaceae (1); g_Streptococcus (1); s_Streptococcus_mutans (1); s_Streptococcus_parasanguinis (1); s_Streptococcus_sanguinis (1); s_Clostridium_bolteae (1); g_Blautia (1); s_Lachnospiraceae_bacterium_3_1_57FAA_CT1 (1); s_Lachnospiraceae_bacterium_7_1_58FAA (1); f_Eubacteriaceae (3)

Table 1 Continued						
Name (analogue UK)	NL% n=1124	UK% n=2737	Effect on alpha div	Effect on beta-div/prop. of core genera	Decreased taxa	Increased taxa
Proton pump inhibitors	8.27	18.7	8.7 *	Yes (1, 2, 3, 4)	s_Eubacterium_hallii (1); s_Eubacterium_ventriosum (1); s_Coprococcus_catus (1); g_Dorea (1); s_Dorea_longicatena (1); f_Ruminococcaceae (1, 3); f_Alcaligenaceae (3); f_Peptococcaceae (3); f_Dehalobacteriaceae (3); f_Coriobacteriaceae (3)	f_Actinomycetaceae (1,3); g_Actinomyces (1); s_Bifidobacterium_dentium (1); f_Lactobacillaceae (1, 3); g_Lactobacillus (1); f_Streptococcaceae (1, 3); g_Streptococcus (1); s_Streptococcus_anginosus (1); s_Streptococcus_mutans (1); s_Streptococcus_ parasanguinis (1); s_Streptococcus_sanguinis (1); s_Streptococcus_salivarius (1); s_Clostridium_bolteae (1); g_Erysip elotrichaceae_noname (1); g_Veillonella (1); s_Veillonella_parvula (1); s_Veillonella_unclassified (1); f_Pasteurellaceae (1, 3); g_Haemophilus (1); s_Haemophilus_parainfluenzae (1); f_Micrococcaceae (3); f_Gemellaceae (3); f_Enterococcaceae (3); f_Fusobacteriaceae (3); f_Enterobacteriaceae (3)
SSRI antidepressants	2.49	6.55		Yes (1, 2, 3)	f_Turicibacteraceae (3); f_Clostridiaceae (3); f_Bifidobacteriaceae (3); f_ Peptost reptoco ccaceae (3); fParapr evotellaceae (3); f_Coriobacteriaceae (3)	
Statins	4.89	25.7		Yes (1, 2, 3)	s_Methanobrevibacter_unclassified (1); g_Coprococcus (1); s_Coprococcus_comes (1); g_Dorea (1); s_Dorea_longicatena (1); f_Peptostreptococcaceae (1); g_Peptostreptococcaceae_noname (1); s_Peptostreptococcaceae_noname_unclassified (1); s_Faecalibacterium_prausnitzi (1)	g_Rothia (1); f_Streptococcaceae (1); g_Streptococcus (1); s_Clostridium_bolteae (1); g_Blautia (1); s_Lachnospiraceae_bacterium_2_1_58FAA (1); s_Lachnospiraceae_bacterium_3_1_57FAA_CT1 (1); s_Coprobacillus_unclassified (1)
Tricyclic antidepressants	0.89	3.77		Yes (1 to 2)	f_Bifidobacteriaceae (1); g_Bifidobacterium (1); f_Streptococcaceae (3); f_ Enterobacteriaceae (3); f_Lactobacillaceae (3)	
Vitamin D (cholecalciferol)	1.25	16.5		Yes (1 to 2)		s_Streptococcus_salivarius (1)

Data extracted from four population studies in three populations: Dutch: (1) Vich Vila et al, Nat Communications, 2019, and (2) Zhernakova et al, Science, 2016, UK: (3) Jackson et al, Nat Communications, 2018 and Belgium: (4) Falony et al, Science, 2016. The table includes drugs used by >2.5% of population in either a Dutch (1) or UK (3) study that showed association to the gut microbiome diversity, composition or taxa. As both Dutch studies (1 and 2) have largely overlapping samples, we only present the taxonomic association results from Vich Vila, which were generated using the more recent MetaPhIAn pipeline and included association on all taxonomic levels.

Name (analog UK): Name of the drug in the Dutch study (1). In brackets, the name of the drug in UK study (3) if another group name is used.

%NL and %UK: Proportion of drug users in the corresponding populations.

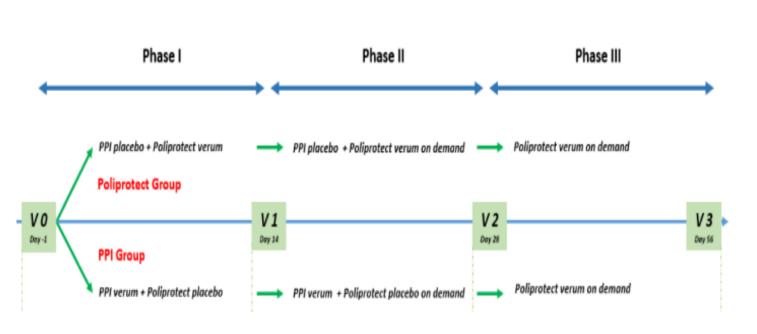
Effect on alpha div: Evidence that the drug has an effect on alpha diversity of gut microbiome, * decrease.

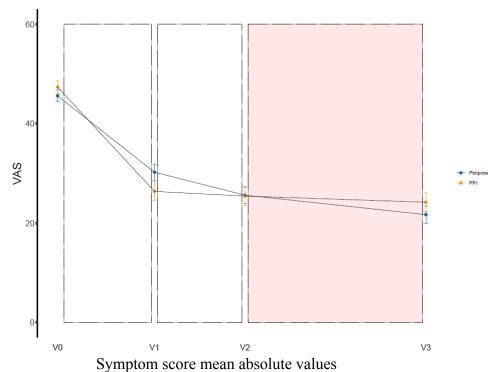
Effect on beta-div/prop. of core genera: Evidence that the drug has an effect on beta-diversity or the proportion of core genera (proportion of core genera is only addressed in study 4).

Decreased taxa: Bacterial taxa negatively associated with drug use.

Increased taxa: Bacterial taxa positively associated with drug use.

SSRI, selective serotonin reuptake inhibitor.


Table 4 Cantinuad



- Frazione polisaccaridica aderente all'epitelio da *Aloe vera,*Malva sylvestris e Althaea officinalis

 per rafforzare la barriera epiteliale
- Componenti <u>antiacidi dai minerali natural</u>i limestone e nahcolite incorporati nella frazione polisaccaridica per tamponare l'acido sull'epitelio al quale aderisce

275 pts GERD e/o EPS

Poliprotect, unlike PPI, does not produce a breakdown of the gastric acid antimicrobial barrier.

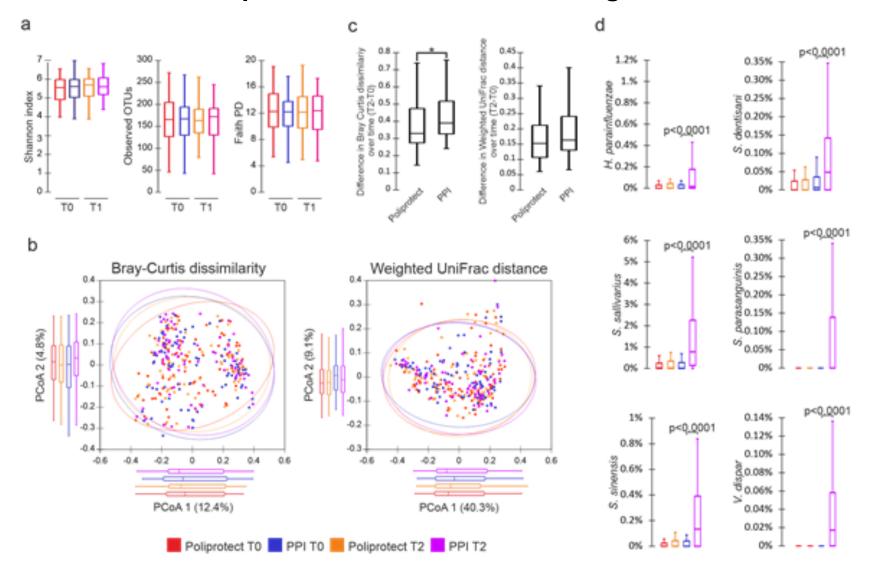


Table 1 Studies conducted to verify the effect of bowel preparation on the microbiota composition

	Year	n	Туре	Sample type	Design of the study	Results Bachmann R, 2017)
Mai et al. ⁴⁵	2006	5	-	L	Comparing intraluminal microbiota precolonoscopy, shortly after colonoscopy and 6–8 weeks after colonoscopy using PCR-DGGE.	MBP has a significant effect on the luminal gut bacteria, with NO clear trends detected in precolonoscopy and postcolonoscopy samples.
Bucher et al ⁴⁶	2006	50	PEG	М	Prospective randomised study of 50 patients who did or did not receive MBP before left-sided colorectal surgery for benign or malign disease with the purpose to determine whether MBP is associated with histological alterations in the colon. All patients received intravenous antibiotics prophylaxis.	The most striking alterations associated with MBP were the loss of superficial mucus and epithelial cells. In addition, inflammatory changes, that is, lymphocytes and polymorphonudear cell infiltration were more prevalent after MBP.
Harrel <i>et al</i> ⁴⁷	2011	12	PEG	М	Mucosa-associated microbiota analysis via biopsies carried out during sigmoidoscopy. The subjects were split into three groups to compare the impact of MBP or liquid diet for 24 hours with no preparation.	Changes in the microbiota composition after MBP and no changes in both control groups were observed. Reduction in overall mucus-associated microbiota diversity after MBP. Changes in the microbiota composition at the genus level but not at phylum level were found.
O'Brien <i>et al</i> ⁴⁸	2013	15+5	PEG	L	Analysis of microbiota in stool samples collected 1 month and 1 week before and 1 week, 1 month and 3 months after by PCR-DGGE and HTS.	Short-term non-specific changes in the microbiota with no lasting effect on the composition of the intestinal microbiota.
Jalanka et al ⁴⁹	2015	23	PEG	L	Randomised study analysing the microbiota in two groups that consumed a bowel preparation treatment (Moviprep) either in two separate doses of 1 L or as a single 2 L dose.	Immediately after the lavage the amount and composition of the microbiota altered drastically. Restoration of the bacteria levels and community composition within 14 days. Consumption of the purgative in a single dose had a more severe effect on the microbiota composition than that of a double dose and notably increased the levels of Proteobacteria, Fusobacteria and bacteria related to Dorea formicigenerans.
Drago et al. ⁵⁰	2016	10	PEG	L	Study of the microbiota composition immediately after MBP and 1 month thereafter.	MBP has a long-lasting effect on the gut microbiota composition and homeostasis, with a particular decrease in <i>Lactobacillaceae</i> , a population of protective bacteria.
Shobar et al ⁵¹	2016	18	½ PEG ½ NaCl	L+M	The effect of bowel preparation on the mucosa-associated and luminal colonic microbiota in healthy subjects and IBD patients by harvesting the sampling during an unprepped sigmoidoscopy and 1 week later during a prepped colonoscopy using HTS. No probiotics or antibiotics within the past 3 months before the study.	MBP massively affected the composition and diversity of the faecal and luminal microbiota in the short term. Luminal samples were similar to mucosal samples immediately post MBP. Both the luminal and mucosal compartments of the gut microbiota are affected.

DGGE, denaturing gradient gel electrophoresis; HTS, high-throughput sequencing; M, mucus-associated bacteria; L, luminal content bacteria; MBP, mechanical bowel preparation; Type, type of bowel preparation: polyethylene glycol solutions (PEG) or saline solutions (NaCl).

CONGRESSO TRISOCIETARIO
AIGO-SIED-SIGE 2022

Lo Screening del Cancro Colon-Retto

Percorsi per una prevenzione efficace

LUCCA, 17 DICEMBRE 2022

Paela Da Massa Cerrara

COMITATO ORGANIZZATORE

Paela Da Massa Cerrara - Glovenni Finucci
Ordine dei Piedici di Lucca

Preparations for colonoscopy

- -remove intestinal mucus and flush-out luminal bacteria > altering microbiota balance.
- -alter quality and production of the protective mucus layer
- -convey oxygen into the lumen, thus negatively affecting anaerobes populations (Proteobacteria);
- -increase in pH;
- -accelerate intestinal transit time, possibly reducing availability of nutrients (e.g. fibres) for bacterial metabolism (Drago L, 2019)

A drastic change in the ratio of <u>Gram-positive to Gram-negative</u> species. Similar changes were observed when studying the microbiota in diarrhoea diseases.

(Bachmann R, 2017)

Conflicting results (no unique pattern of microbial modification, duration of the effects, restitutio ad integrum, etc.) are probably due to the <u>small number</u> of subjects, the inclusion of <u>healthy and diseased</u> subjects, the lack of a non-procedure <u>control group</u>, and a lack of analytical depth in these studies. Different ways of <u>sample collection</u>

Antibiotics

Different classes > very different effects on the gut microbiota

Beta-lactamics, fluoro-quinolones, glycylcyclines, lincosamide, nitroimidazole, and various combinations of antibiotics > alteration of the gut microbiota composition with a reduction of autochthonous taxa and an increase of potentially pathogenic bacteria, such as Enterobacteriaceae.

In contrast, Bifidobacteria, Faecalibacterium prausnitzii and Lactobacilli, seem to be reduced after antibiotic treatment.

(Ponziani FR, 2016)

Table 1. Impact of different antimicrobial classes on gut microflora and immunity; adapted from references [13, 37, 48]

	Changes in mic	robial composition	n	Emergence of d	rug-resistant bacteria	_
	Gram-positive	entero-bacteria	anaerobes	Gram-positive	entero-bacteria	immunity
Ceftriaxone	1	11	_	-/ ↑	↑	sIgA↓
Amoxicillin ± BLI	1	1	_	_	_	APC ↓ AMP ↓
Ciprofloxacin	_	11	_	_	1	AMP↓
Clindamycin	1	1	11	1	1	?
Metronidazole	_	_	_	_	_	AMP↑
Metronidazole + clarithromycin	1	1	1	1	1	AMP ↓* IIC ↓
Vancomycin	↓/↑	_	Ţ	1	1	AMP ↓* ILF ↓

 $[\]downarrow$: Reduction; $\downarrow\downarrow$: strong reduction; \uparrow : increase; $\uparrow\uparrow$: strong increase; -: not relevantly altered; $\downarrow\uparrow\uparrow$: discrepant reports; \uparrow : not reported; \uparrow : in combination with other antimicrobial substances.

APC = Antigen presenting capacity; AMP = antimicrobial peptides (e.g. LL-37, REG3- γ); BLI = beta-lactamase inhibitor; sIgA = secretory immunglobulin A; IIC = intestinal innate immune cells; ILF = intestinal lymphoid follicles.

Rifaximin

Non-aminoglycoside, semisynthetic, non-systemic antibiotic derived from rifamycin SV. Originally licensed in Italy as polymorphic form α in 1985.

(Tursi A, 2018)

Rifaximin inhibits bacterial protein synthesis by binding to the β -subunit of bacterial DNA-dependent RNA polymerase.

Strong activity (bactericidal and bacteriostatic) against Gram-positive and Gram-negative bacteria, both aerobic and anaerobic

Intrinsic **anti-inflammatory activity** (down-regulates the release of pro-inflammatory cytokines and TNF production). It reduces gut inflammation modulating the activity of the inflammasome NLRP3 (nucleotide-binding oligomerization domain leucine rich repeat and pyrin domain containing protein 3).

Rifaximin can modulate **the bacterial adhesion** to the intestinal mucosa reestablishing an effective **epithelial mucosal barrier** and, consequently, the **intestinal permeability**(Ponziani FR. 2016)

Rifaximin reduces the total load of the gut microbiota

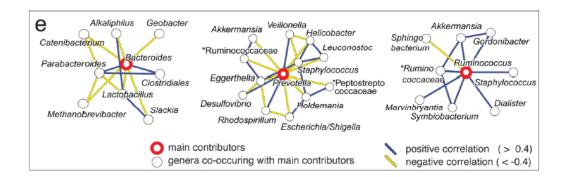
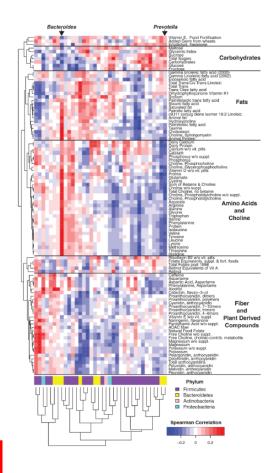

Eubiotic effects: Rifaximin promotes the growth of beneficial bacteria, such as Bifidobacteria and Lactobacilli

Table 1 Studies investigating the effects of rifaximin on gut microbiota composition

Ref.	Patients/model	Technique	Rifaximin dose	Changes in gut microbiota after rifaximin
Brigidi et al ^[77] , 2002	12 pts UC	Standard bacteriological	1800 mg/d, 3 cycles	Enterococci: <
		procedures	of 10 d followed by	Coliform: =
			25 d of wash-out	Bifidobacteria: >
				Lactobacilli: <
				Clostridium perfrigens: > than <
(Ponziani FR, 2010	6)			Bacteroides:
				unpredictable variations
				Candida: =
				Overall composition:
				not explored
Maccaferri et al ^[78] , 2010	4 pts colonic active	Continuous	1800 mg/d	Bifidobacterium: >
	CD	culture colonic model system,		Atopobium: >
		FISH, quantitative PCR,		
		PCR-denaturing gradient gel		
		electrophoresis		
				Faecalibacterium prausnitzii: >
				Overall composition: =
Bajaj et al ^[76] , 2013	20 pts HE	454 pyrosequencing	1100 mg/d	Overall composition: =
Xu et al ^[79] , 2014	Rat model	Quantitative PCR, 454	150 mg/kg, twice	Lactobacillus: >
	of visceral	pyrosequencing	daily	Clostridiaceae, Erysipelotrichaceae, and
	hyperalgesia			Peptostreptococcaceae: <
				Overall composition: 84% reduction in bacterial load
Soldi et al ^[80] , 2015	15 pts non-C IBS	Real-time PCR, Illumina	1650 mg/d for 14 d	Faecalibacterium prausnitzii: >
		pyrosequencing		Clostridiaceae, Streptococcaceae: <
				Bacteroidaceae, Prevotellaceae: >
				Overall composition: =
Ponziani et al ^[81] , 2016	20 pts CD, UC,	454 pyrosequencing	1200 mg/d for 14 d	Lactobacillus: >
	non-C IBS, DD, HE			Roseburia, Haemophilus, Veillonella and
				Streptococcus: <
				Overall composition: =

Pts: Patients; UC: Ulcerative colitis; CD: Crohn's disease; FISH: Fluorescence in situ hybridization; PCR: Polymerase chain reaction; HE: Cirrhosis with hepatic encephalopathy; non-C IBS: Irritable bowel syndrome without constipation; DD: Diverticular disease.

Diet and Enterotypes


<u>Bacteroides enterotype</u>: associated with animal protein, a variety of aminoacids, and saturated fats > meat consumption (Western diet) characterized this enterotype.

<u>Prevotella enterotype:</u> associated with carbohydrates and simple sugars > diet more typical of agrarian societies

Vegetarian diets: dominance of Firmicutes and Bacteroidetes

Diet rich in **protein and fats:** abundance of bile-tolerant species (Bacteroides, Bilophila and Alistipes) and a suppression of Firmicutes

(David, 2014)
(Forouhi, 2018)

Wu GD, et al. Science. 2011

Early in **infancy**, the gut microbiota is enriched in genes involved in the digestion of <u>oligosaccharides</u> (breast milk); later (introduction of solid foods) it is enriched in genes associated with the metabolism of <u>polysaccharides and vitamins</u>

(Backhed et al. 2015).

The method of feed affects microbial composition in infant microbiota.

Breast-fed infants: overgrowth of Actinobacteria and an inhibition of Firmicutes and Proteobacteria. Breast milk includes <u>oligosaccharides</u> that can be metabolized effectively by these bacterial species, resulting in an increase in SCFAs > increased expression of IgG.

(Thompson, 2015)

Formulafed infants: increasing of Clostiridia, Streptococci, Bacteroides and Enterobacteria

(Azad, 2013) (Lee, 2015)

The halophilic archae such as Halorubrum koreense, Halorubrum alimentarium, Halorubrum saccharovorum, and Halococcus morrhuae were isolated from Korean, not IBS, subjects. It could be due to <u>Koreans'high-salt food intake</u>. (Nam, 2008)

High-fiber diet vs High-fat diet

Table I. Effect of carbohydrates on gut microbiota composition.

Resistant starch 2 ↑ Ruminococcus spp, Eubacterium rectale, Bifidobacterium adolescentis

Resistant starch 3 ↑ Eubacterium rectale, Roseburia spp, Ruminococcus bromii

↑ Parabacteroides diastasonis

↓ Eubacterium rectale, Ruminococcus bromii

High soluble fiber diet ↑ Bacteroides spp., C. leptum group, and E. rectale

Complex carbohydrates ↑ Bifidobacteria spp, Prevotella spp

Low fiber diet ↓ Roseburia spp, Eubacterium rectale

Table II. Effect of oligosaccharides on gut microbiota composition.

Fructo-oligosaccharides
Inulin
Tuctans
Fructans
Galacto-oligosaccharides
Arabinoxylan-oligosaccharides

† Bifidobacterium spp, Lactobacillus spp

† Bifidobacterium spp, Clostridium spp

† Bifidobacterium spp, F. prausnitzii

† Bifidobacterium spp

Table III. Effect of high-fat diet on gut microbiota composition.

Safflower oil (ω-6 PUFA)

↑ Firmicutes, Actinobacteria, Proteabacteria

↓ Bacteroides

PUFA

↓ Lactobacillus spp

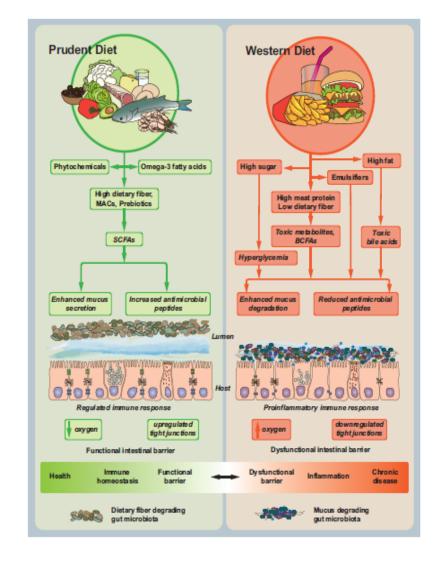
⊕ -6 PUFA

↓ Bifidobacteria spp

↓PUFA

↑ L. casei Shirota

MUFA


↓ Bifidobacteria spp

High-fat diet

↑ delta-proteabacteria spp, Bilophila wadsworthia

↓ Roseburia spp

RS 1 plant cell wall polymers (grains, seeds, legumes)
RS 2 granular structure (raw potatoes, green bananas)
RS3 retro-gradation resulting from heating and cooling
(cooked potatoes and rice)
RS4 chemical cross-linking

Prebiotics

- Oligosaccharide (XOS, GOS, lactulose, inulin, FOS, TGOS)
- Polysaccharides (Algae polysaccharides)
- Polyphenols isolated from fruits (black raspberries and blueberries)*
- Polypeptide polymers (Poly-gamma-glutamate)

Prebiotics can help to:

- correct dysbiosis by promoting positive alterations in the microbial flora, for instance **enhancing the proliferation of gut bacteria including Bifidobacterium** (Paineau, 2008; Silk, 2009).
- regulate immunity
- improve intestinal barrier function
- increase mineral absorption
- lower blood lipid levels
- (Chong PP, 2019)

FIGURE 2

A model for possible mechanisms of prebiotic benefits to human health (66). GLP1, glucagon like peptide1; M cell, microfold cell; NK, natural killer; PYY, peptide YY; TGFβ, transforming growth factor-β; TH1, TH2, type 1T helper, type 2T helper; Treg, regulatory T; ZO1, zonula occludens 1.

Angelo Ricchiuti 1, Nicola de Bortoli 1, Marta Mosca 2, Santino Marchi 1 and Alessandra Rossi 2

Tarek Mazzawi 1,20

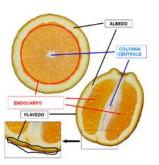
Microorganisms 2022, 10, 1332

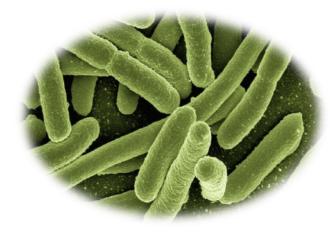
Table 2. Randomized controlled trials investigating the effect of low FODMAP diet on gut microbiota and microbiota metabolites.

Authors, Years	Study Design	Diagnostic Criteria	G	ut Microbiota	Microbiota	n Metabolites	
Aumors, lears	and Duration	and Materials	Microbial Analysis	Findings	Methods	Findings	
Halmos EP et al., 2015 [44]	RCT, crossover (single blind), 3 weeks	Rome III IBS and healthy controls. LFD vs. ordinary diet. IBS $n = 27$, Healthy controls $n = 6$	qPCR	Lower absolute abundance of Bifidobacteria, F. prausnitzii, Clostridium Cluster IV and lower relative abundance Akkermansia muciniphila in LFD than ordinary diet. Lower total bacteria in LFD at baseline. Greater diversity Clostridium Cluster XIV in LFD than ordinary diet at baseline	Gas liquid chromatography	No difference in total or individual stool SCFAs in LFD compared to ordinary diet, baseline.	
McIntosh K, et al., 2017 [53]	RCT (single blind), 3 weeks	Rome III IBS. LFD $n = 19$, HFD $n = 18$	16S rRNA sequencing (Illumina)	Higher richness of Actinobacteria, Firmicutes, Clostridiales in LFD than HFD. No difference in α- or β-diversity after LFD vs. baseline. Higher richness in LFD than HFD. Higher abundance of Clostridiales family XIII <i>Incertae sedis</i> spp. and <i>Porphyromonas</i> spp. in LFD than baseline. Lower abundance of Propionibacteriaceae, Bifidobacteria in LFD than baseline.	Mass spectroscopy	Urinary metabolomic profile at baseline in LFD vs. HFD showed no difference but separated after intervention. Three metabolites (histamine, p-hydroxybenzoic acid and azelaic acid) discriminated groups. Correlations between metabolite concentrations and abundance of various taxa.	
Staudacher HM et al., 2012 [54]	RCT (unblind), 4 weeks	Rome III IBS. LFD $n = 19$, Habitual diet $n = 22$	Fluorescence in situ hybridization	Lower abundance of Bifidobacteria in LFD than habitual diet. No difference in total abundance of other groups (F. prausnitzii)	Gas liquid chromatography	No difference in total or individual stool SCFAs in LFD compared to habitual diet	
Staudacher HM et al., 2017 [52]	RCT (single blind), 4 weeks	Rome III IBS. LFD $n = 51$, Sham $n = 53$	qPCR	Lower abundance of Bifidobacteria in LFD compared to sham	Gas liquid chromatography	Lower stool acetate concentration in LFD compared to control	

IBS: irritable bowel syndrome; RCT, randomized controlled trial; LFD, low FODMAP diet; HFD, high FODMAP diet; SCFA, short chain fatty acid; qPCR, quantitative polymerase chain reaction. All differences reported are significant (p < 0.05). **FODMAPs**

Fermentable Oligo- Di- & Mono-saccharides And Polyols




TABLE 1 Different kinds of emerging prebiotics.

Prebiotic	Component	Source	Function	References
Polyphenol	Blueberry polyphenol extract	Blueberry	Reduce weight and normalize	(22)
			lipid metabolism	
	Wine grape seed flour	Grape seed	Intestinal permeability is	(56)
			enhanced, and adipocyte gene	
			expression is altered to inhibit	
			high-fat-induced obesity and	
			inflammation.	
	Orange albedo	Orange	Stimulates the growth,	(57)
			reproduction, and metabolism	
			of Lactobacillus acidophilus	
			and Lactobacillus animalis	
	Catechin and punicalagin	Fermented pomegranate juice	Increases antioxidant capacity	(58)
			and improves survival of	
			lactic acid bacteria	
Polypeptide polymers	Poly-gamma-glutamate (PGA)	Bacillus fermentation	Increases abundance of	(59)
			Lactobacillus and reduces	
			abundance of Clostridium,	
			helping to regulate the	
			intestinal microbiota.	
Polysaccharides	Algae polysaccharides	Algae	Improves the activity of some	(60)
			beneficial flora and stimulates	
			the production of functional	
			metabolites in the intestinal	
			microbiota.	
	Lotus seed resistant starch (LRS3-20%)	Lotus seed	Shows high probiotic activity	(61)
			against Bifidobacterium and	
			Lactobacillus acidophilus.	
	Longan pulp polysaccharides	Logan	Promotes the growth of	(62)
			Lactobacillus plantarum,	
			Lactobacillus bulgaricus and	
			Lactobacillus fermentum	

Probiotics

«Living microorganisms (bacteria and yeast), which are friendly to the gut and confer health benefits to the host when given in adequate amounts»

- Bifidobacterium ++ (B. infantis, B. lactis, B. bifdum, B. Animalis)
- Lactobacillus + (L. plantarium, L. rhamnosus, L. casei, L. reuteri)
- Escherichia (E. coli Nissle 1917)
- Saccharomyces (S. cerevisiae, S. boulardi)
- Indications: IBS, IBD, gastroenteritis, diarrhoea...
- Single strain / Multi-strain ?
- Symbiotics?
- Dosage and treatment duration
- Effects (short termed)

Efficacy, Safety, and Concerns on Microbiota Modulation, Antibiotics, Probiotics, and Fecal Microbial Transplant for Inflammatory Bowel Disease and Other Gastrointestinal Conditions: Results from an International Survey

Tommaso Lorenzo Parigi ^{1,2} ⁰, Sophie Vieujean ³ ⁰, Kristine Paridaens ⁴ ⁰, Kira Dalgaard ⁵, Laurent Peyrin-Biroulet ^{6,7,8,9,10,11} and Silvio Danese ^{1,2,*}

Microorganisms 2023, 11, 2806.

Microbiota modulation remains a relatively underutilized clinical practice, with limited adoption in healthcare settings...while there is consensus on the relevance of the gut microbiota in IBD and other GI disease pathogenesis

European guidelines on microscopic colitis: United European Gastroenterology and European Microscopic Colitis Group statements and recommendations 2020

Is there a role for probiotics in MC? We recommend against use of probiotics for treatment of MC. LE: low; GR: strong against; agreement: 100%, strong consensus

Italian guidelines for the management of irritable bowel syndrome 2022

Should probiotics be used to treat global IBS symptoms?

we recommend for the use of probiotics, as a group, for improving overall symptoms or abdominal pain Yes

Conditi

Functional bowel disorders with diarrhoea: Clinical guidelines of the United European Gastroenterology and European Society for Neurogastroenterology and Motility

UEG/ESNM recommends FOR the use of probiotics that may improve overall symptoms and diarrhoea in some patients with IBS-D, but there is no evidence for FDr.

Low

Conditional

European society of neurogastroenterology and motility guidelines on functional constipation in adults 2019

Insufficient evidence to recommend FMT for routine treatment of functional constipation

Level of evidence: LowRecommendation: WeakLevel of agreement: 100%

Limited evidence for a positive effect of probiotics on acceleration of intestinal transit time and improvements in stool frequency

Level of evidence: LowRecommendation: WeakLevel of agreement: 100%

British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults

...probiotic therapy may have modest benefits in UC, but should not be routinely used. No evidence of any benefit for these treatments in Crohn's disease

Efficacy of Probiotics in Irri	table Bowel Syndrome: Systematic	
Davidson and Made analysis		

Vivek C. Goodoory, ^{1,2,*} **Mais Khasawneh**, ^{1,2,*} Christopher J. Black, ^{1,4} Eamonn M. M. Quigley, ³ Paul Moayyedi, ⁴ and Alexander C. Ford ^{1,2}

82 trials; >10000 pts.

Efficacy of Probiotics Persistence of **Global Symptoms** in IBS

BENEFIT

Bacillus strains.

Moderate certainty for Escherichia strains,
Low certainty for Lactobacillus strains and Lactobacillus plantarum 299V,
Very low certainty for combination probiotics and

Paucity of trials of probiotics in IBS-C, meaning their use in this subtype is less evidence-based

1,2	Number of trials	Number of patients	RR of persistence of global symptoms (95% CI)	P value for the difference	f^2 (P value for χ^2)
	00	0000	0.70 (0.74 0.07)	. 004	710((- 001)
All combination probiotics VSL#3	32 4	3369 155	0.78 (0.71–0.87) 0.78 (0.53–1.16)	<.001 .23	71% (<.001)
Lactobacillus paracasei ssp paracasei F19,	3	269	0.78 (0.55–1.16)	.38	47% (.13) 14% (.31)
Lactobacillus paracaser ssp paracaser F19, Lactobacillus acidophilus La5, and Bifidobacterium lactis Bb12	3	209	0.92 (0.76–1.11)	.36	14% (.31)
Enterococcus faecalis DSM16440 and Escherichia coli DSM17252	2	686	0.71 (0.33–1.51)	.37	97% (<.001)
LacClean Gold S	2	130	0.59 (0.37-0.93)	.02	0% (.56)
Duolac 7s	2	76	0.62 (0.43-0.89)	.009	0% (.62)
All Lactobacillus strains	16	1498	0.84 (0.72-0.98)	.03	69% (<.001)
Lactobacillus plantarum 299V	5	453	0.73 (0.59-0.92)	.007	59% (.04)
All Bifidobacterium strains	5	1161	0.82 (0.67-1.02)	.07	74% (.004)
Bifidobacterium bifidum MIMBb75	2	565	0.69 (0.46-1.04)	.07	83% (.01)
All Bacillus strains	3	216	0.44 (0.34-0.57)	<.001	0% (.48)
All Saccharomyces strains	2	469	0.94 (0.80-1.11)	.49	0% (.86)
All Escherichia strains	2	418	0.86 (0.79-0.93)	<.001	0% (.78)
All Blautia strains	1	366	0.93 (0.84-1.03)	.15	N/A
All Clostridium strains	1	200	0.80 (0.64-0.99)	.04	N/A
All Streptococcus strains	1	54	0.72 (0.53-0.99)	.04	N/A
Patients with IBS-D					
All combination probiotics	13	1272	0.78 (0.67-0.92)	.002	69% (<.001)
VSL#3	2	49	0.42 (0.04–4.85)	.49	82% (.02)
Duolac 7s	2	76	0.62 (0.43–0.89)	.009	0% (.62)
All Lactobacillus strains	4	157	0.57 (0.36–0.89)	.01	27% (.25)
All Saccharomyces strains	2	169	0.99 (0.76–1.28)	.92	0% (.81)
All Clostridium strains	1	200	0.80 (0.64–0.99)	.04	N/A
All Blautia strains	1	202	0.94 (0.82–1.08)	.36	N/A
All Escherichia strains	1	54	1.00 (0.57–1.74)	1.00	N/A
All Bifidobacterium strains	1	44	0.64 (0.36–1.16)	.14	N/A
All Bacillus strains	i i	40	0.57 (0.31–1.05)	.07	N/A
Patients with IBS-C			,		
All combination probiotics	4	295	1.01 (0.89-1.14)	.87	8% (.35)
All Saccharomyces strains	1	180	0.82 (0.62–1.08)	.16	N/A
All Blautia strains	i i	164	0.92 (0.78–1.07)	.26	N/A
All Escherichia strains	1	35	0.84 (0.41–1.73)	.64	N/A
. I. Edonoriona ditanto	•	00	0.04 (0.41-1.70)	.54	. 4/1

CI, confidence interval; IBS, irritable bowel syndrome; IBS-C, IBS with constipation; IBS-D, IBS with diarrhea; N/A, not applicable; RR, relative risk.

Persistence of Global IBS Symptoms

Combination Probiotics vs. placebo

Lactobacillus strains vs. placebo

Bifidobacterium strains vs. placebo

A	Probio	tics	Contr	ol		Risk Ratio		Risk Ratio	Risk of Bias
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI	ABCDEFO
(im 2003	8	12	8	13	2.0%	1.08 [0.60, 1.95]	2003		$\bullet \bullet \bullet \bullet \bullet \bullet \bullet$
Kajander 2005	21	52	34	51	3.2%	0.61 [0.41, 0.89]	2005		
(ajander 2008	19	43	28	43	3.0%	0.68 [0.45, 1.01]	2008		$\bullet \bullet \bullet \bullet \bullet \bullet \bullet$
Zeng 2008	12	15	14	15	4.0%	0.86 [0.64, 1.14]	2008		
nck 2008	47	149	92	148	4.1%	0.51 [0.39, 0.66]	2008		
rouault-Holowacz 2008	33	53	31	53	3.8%	1.06 [0.78, 1.45]	2008		
grawal 2009	11	17	15	17	3.1%	0.73 [0.50, 1.08]	2009		
Villiams 2009	9	28	16	28	1.8%	0.56 [0.30, 1.05]	2009		
long 2009	16	36	17	34	2.4%	0.89 [0.54, 1.46]	2009		$\bullet \bullet \bullet \bullet \bullet \bullet \bullet$
Simren 2010	23	37	27	37	3.7%	0.85 [0.62, 1.17]	2010		$\bullet \bullet \bullet \bullet \bullet \bullet \bullet$
Ringel-Kulka 2011	11	17	9	16	2.1%	1.15 [0.66, 2.01]	2011		
Sondergaard 2011	25	32	23	32	4.0%	1.09 [0.82, 1.44]	2011	-	
fichail 2011	1	15	5	9	0.3%	0.12 [0.02, 0.87]	2011 +		
ha 2012	13	25	22	25	3.0%	0.59 [0.39, 0.88]	2012		
to 2013	6	14	7	12	1.3%	0.73 [0.34, 1.59]	2013		
Roberts 2013	70	92	67	92	5.0%	1.04 [0.88, 1.24]	2013	_	
Begtrup 2013	32	67	38	64	3.7%	0.80 [0.58, 1.11]	2013	-	
oon 2014	8	25	15	24	1.7%	0.51 [0.27, 0.98]	2014		
sisson 2014	85	124	53	62	5.1%	0.80 [0.69, 0.94]	2014	-	
udidi 2014	17	21	12	19	3.0%	1.28 [0.86, 1.91]	2014		
orenzo-Zuniga 2014	38	55	23	29	4.2%	0.87 [0.67, 1.13]	2014		
afari 2014	8	54	29	54	1.6%	0.28 [0.14, 0.55]	2014	NEC	
oon 2015	10	39	16	42	1.7%	0.67 [0.35, 1.30]	2015		
lod 2017	43	54	40	53	4.7%	1.06 [0.86, 1.29]	2017		
staudacher 2017	13	26	20	27	2.7%	0.68 [0.43, 1.05]			
shaque 2018	125	181	157	179	5.4%	0.79 [0.70, 0.88]	2018	-	
onfrate 2020	7	15	9	10	2.0%	0.52 [0.29, 0.93]	2020		
uran 2021	13	50	14	50	1.7%	0.93 [0.49, 1.77]	2021		
krzydło-Radomańska 2021	12	25	22	26	2.8%	0.57 [0.37, 0.88]	2021		
1ack 2022	159	191	171	198	5.6%	0.96 [0.89, 1.05]	2022		
uteja 2022	15	24	21	29	3.2%	0.86 [0.59, 1.27]	2022		
ai 2023	47	145	92	145	4.1%	0.51 [0.39, 0.67]	2023		
otal (95% CI)		1733		1636	100.0%	0.78 [0.71, 0.87]		•	
otal (95% CI)	957	., 33	1147	.030	.00.070	0.70 [0.71, 0.07]		·	
lotal events Heterogeneity: Tau² = 0.05; CI									100

Risk of bias legend

- (A) Random sequence generation (selection bias)
- (B) Allocation concealment (selection bias)
- (C) Blinding of participants and personnel (performance bias) (D) Blinding of outcome assessment (detection bias)
- (E) Incomplete outcome data (attrition bias)
- (F) Selective reporting (reporting bias)

В	Probiot	ics	Contr	ol		Risk Ratio		Risk Ratio	Risk of Bias
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI	ABCDEFG
Nobaek 2000	19	30	23	30	7.4%	0.83 [0.59, 1.16]	2000		
Niedzielin 2001	11	20	17	20	6.0%	0.65 [0.42, 1.00]	2001	-	
Niv 2005	18	27	17	27	6.6%	1.06 [0.71, 1.57]	2005		
Simren 2006	18	29	21	29	7.0%	0.86 [0.60, 1.23]	2006		⊕ ⊕ ⊕
Ducrotte 2012	61	108	105	106	10.1%	0.57 [0.48, 0.67]	2012		
Farup 2012	6	9	3	7	2.1%	1.56 [0.59, 4.11]	2012		
Dapoigny 2012	19	26	16	26	6.7%	1.19 [0.81, 1.74]	2012		
Stevenson 2014	30	54	16	27	6.6%	0.94 [0.63, 1.39]	2014		
Lyra 2016	193	260	94	131	10.6%	1.03 [0.91, 1.18]	2016	+	
Thijssen 2016	25	39	29	41	7.9%	0.91 [0.67, 1.23]	2016		
Cremon 2018	16	20	19	20	9.0%	0.84 [0.66, 1.07]	2018	-	
Shin 2018	12	30	16	30	4.7%	0.75 [0.43, 1.30]	2018		
Oh 2019	7	28	16	27	3.3%	0.42 [0.21, 0.86]	2019		
Lewis 2020	53	95	53	95	8.8%	1.00 [0.78, 1.29]	2020		
Sadrin 2020	7	40	12	40	2.7%	0.58 [0.26, 1.33]	2020		
Jung 2022	1	18	4	9	0.6%	0.13 [0.02, 0.96]	2022	•	
Total (95% CI)		833		665	100.0%	0.84 [0.72, 0.98]		•	
Total events	496		461						
Heterogeneity: Tau2 =	0.05; Chi	= 48.3	29. df = 1	5 (P < (0.0001); P	= 69%			
Test for overall effect	Z = 2.22	P = 0.0	(3)		The second second			0.1 0.2 0.5 1 2 5 Favours probiotics Favours control	10

Risk of bias legend

- (A) Random sequence generation (selection bias)
- (B) Allocation concealment (selection bias)
 (C) Blinding of participants and personnel (performance bias)
- (D) Blinding of outcome assessment (detection bias)
- (E) Incomplete outcome data (attrition bias)
- (F) Selective reporting (reporting bias) (G) Other bias

C	Probiot	tics	Contr	ol		Risk Ratio		Risk Ratio	Risk of Bias
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI	ABCDEFG
Whorwell 2006	143	270	54	92	23.5%	0.90 [0.74, 1.11]	2006		
Guglielmetti 2011	26	60	49	62	17.9%	0.55 [0.40, 0.75]	2011		
Pinto-Sanchez 2017	9	22	14	22	8.7%	0.64 [0.36, 1.16]	2017		$\bullet \bullet \bullet \bullet \bullet \bullet \bullet$
Lewis 2020	61	95	53	95	22.0%	1.15 [0.91, 1.45]	2020	-	
Andresen 2020	147	221	179	222	27.9%	0.82 [0.74, 0.92]	2020	-	
Total (95% CI)		668		493	100.0%	0.82 [0.67, 1.02]		•	
Total events	386		349						
Heterogeneity: Tau2 =	0.04; Chi2	= 15.2	8. df = 4 (P = 0.0	$(04); I^2 = 7$	4%		0102 05 1 2 5	10
Test for overall effect:	Z = 1.82 (F	0.03	7)					0.1 0.2 0.5 1 2 5 Favours probiotics Favours control	

Risk of bias legend

- (A) Random sequence generation (selection bias)
- (B) Allocation concealment (selection bias)
- (C) Blinding of participants and personnel (performance bias)
- (D) Blinding of outcome assessment (detection bias) (E) Incomplete outcome data (attrition bias)
- (F) Selective reporting (reporting bias)
- (G) Other bias

Efficacy of Probiotics in Irritable Bowel Syndrome: Systematic Review and Meta-analysis Gastroenterology 2023;165:1206-1218

Vivek C. Goodoory, ^{1,2,*} **Mais Khasawneh**, ^{1,2,*} Christopher J. Black, ^{1,2} Eamonn M. M. Quigley, ³ Paul Moayyedi, ⁴ and Alexander C. Ford ^{1,2}

Efficacy of Probiotics in Persistence of **Abdominal Pain** in IBS

BENEFIT

Low certainty for Saccharomyces cerevisiae I-3856 and Bifidobacterium strains,

Very low certainty for combination probiotics, Lactobacillus, Saccharomyces, and Bacillus strains.

	Number of trials	Number of patients	RR of persistence of abdominal pain (95% CI)	P value for the difference	I^2 (P value for χ^2)
All combination probiotics VSL#3 Lactobacillus paracasei ssp paracasei F19, Lactobacillus acidophilus La5, and Bifidobacterium lactis Bb12	32 4 3	3469 144 269	0.72 (0.64–0.82) 0.87 (0.64–1.18) 0.97 (0.83–1.14)	<.001 .36 .74	72% (<.001) 19% (.29) 0% (.91)
Enterococcus faecalis DSM16440 and Escherichia coli DSM17252 Bifidobacterium animalis DN173 010, Streptococcus thermophilus, and	2	686 308	0.67 (0.37–1.22) 0.89 (0.70–1.12)	.19 .32	92% (<.001) 33% (.22)
Lactobacillus bulgaricus LacClean Gold S Duolac 7s	2 2	130 76	0.76 (0.52–1.10) 0.55 (0.18–1.65)	.14 .28	0% (.72) 73% (.05)
All Lactobacillus strains Lactobacillus plantarum 299V	11 3	1183 220	0.59 (0.45–0.76) 0.45 (0.15–1.35)	<.001 .16	73% (<.001) 78% (.010)
All Saccharomyces strains Saccharomyces cerevisiae I-3856 Saccharomyces boulardii	9 5 3	1744 1482 232	0.75 (0.57-0.99) 0.64 (0.45-0.90) 1.21 (0.87-1.67)	.04 .01 .26	89% (<.001) 93% (<.001) 44% (.17)
All Bifidobacterium strains	3	389	0.78 (0.64-0.95)	.02	37% (.20)
All Bacillus strains	3	212	0.33 (0.23-0.47)	<.001	10% (.33)
All Blautia strains	1	366	0.92 (0.79-1.06)	.25	N/A
All Escherichia strains	1	298	0.87 (0.79-0.95)	.002	N/A
All Clostridium strains	1	200	0.93 (0.76–1.14)	.49	N/A

CI, confidence interval; N/A, not applicable; RR, relative risk.

Abdominal pain in IBS

Combination Probiotics vs. placebo

Lactobacillus strains vs. placebo

Saccharomyces strains vs. placebo

A	Probio	tion	Contr			Risk Ratio		Risk Ratio	Risk of Bias
Study or Subgroup					Weight	M-H, Random, 95% CI	Year	M-H. Random, 95% CI	ABCDEFG
Kim 2003	6	12	10	13	2.2%	0.65 [0.34, 1.23]	2003		
Kajander 2005	25	52	34	51	3.7%	0.72 [0.51, 1.02]	2005		
Kim 2006	11	20	13	20	2.7%	0.85 [0.51, 1.41]	2006		
Guyonnet 2007	87	137	91	137	4.6%	0.96 [0.80, 1.14]	2007	-	
Enck 2008	41	149	82	148	3.9%	0.50 [0.37, 0.67]	2008		
Zeng 2008	11	15	15	15	3.8%	0.74 [0.54, 1.02]	2008		
Drouault-Holowacz 2008	21	53	26	53	3.2%	0.81 [0.52, 1.24]	2008		
Hong 2009	13	36	19	34	2.7%	0.65 [0.38, 1.09]	2009		
Agrawal 2009	11	17	15	17	3.4%	0.73 [0.50, 1.08]	2009		
Williams 2009	9	28	15	28	2.2%	0.60 [0.32, 1.14]	2009		
Simren 2010	20	37	22	37	3.3%	0.91 [0.61, 1.35]	2010		
Sondergaard 2011	18	32	19	32	3.2%	0.95 [0.62, 1.44]	2011		
Michail 2011	2	15	4	9	0.6%	0.30 [0.07, 1.32]	2011	4	
Cui 2012	14	37	17	23	2.9%	0.51 [0.32, 0.83]	2012		
Cha 2012	13	25	15	25	2.8%	0.87 [0.53, 1.42]	2012		
Ko 2013	3	14	9	12	1.1%	0.29 [0.10, 0.82]	2013	4	
Beatrup 2013	52	67	50	64	4.6%	0.99 [0.83, 1.19]		_	
Sisson 2014	69	124	41	62	4.3%	0.84 [0.66, 1.07]			
Yoon 2014	11	25	15	24	2.6%	0.70 [0.41, 1.21]	2014		
Shavakhi 2014	33	66	36	66	3.8%	0.92 [0.66, 1.27]	2014		
Yoon 2015	15	39	20	42	2.7%	0.81 [0.49, 1.34]	2015		
Wong 2015	13	20	15	22	3.2%	0.95 [0.62, 1.47]	2015		
Mezzasalma 2016	11	52	43	52	2.6%	0.26 [0.15, 0.44]	2016		
Hod 2017	39	54	29	53	3.9%	1.32 [0.98, 1.77]			
Ishaque 2018	15	181	57	179	2.6%	0.26 [0.15, 0.44]	2018		
Barraza-Ortiz 2021	11	18	15	18	3.2%	0.73 [0.48, 1.12]	2020		
Bonfrate 2020	4	15	8	10	1.4%	0.33 [0.14, 0.82]	2020		
Turan 2021	21	50	23	50	3.1%	0.91 [0.59, 1.42]	2021		
Skrzydło-Radomańska 2021	16	25	24	26	3.8%	0.69 [0.51, 0.95]	2021	I	
Mack 2022	111	191	129	198	4.7%	0.89 [0.76, 1.04]	2022		
Tuteja 2022	16	24	19	29	3.4%	1.02 [0.69, 1.50]			
Bai 2023	40	145	90	145	4.0%	0.44 [0.33, 0.60]	2023		
Total (95% CI)		1775		1694	100.0%	0.72 [0.64, 0.82]		•	
Total events	782		1020						
Heterogeneity: Tau² = 0.08; CI Test for overall effect: Z = 5.06			31 (P < 0.	.00001	; I ² = 72%	6		0.1 0.2 0.5 1 2 5 Favours probiotics Favours control	10

Risk of bias legend

(A) Random sequence generation (selection bias)

(B) Allocation concealment (selection bias)

(C) Blinding of participants and personnel (performance bias)

(D) Blinding of outcome assessment (detection bias)

(E) Incomplete outcome data (attrition bias) (F) Selective reporting (reporting bias)

В	Probiot	ics	Contr	ol		Risk Ratio		Risk Ratio	Risk of Bias
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI	ABCDEFG
Nobaek 2000	21	30	25	30	14.4%	0.84 [0.63, 1.12]	2000		
Niedzielin 2001	1	20	7	20	1.5%	0.14 [0.02, 1.06]	2001	-	
Sinn 2008	4	20	13	20	5.4%	0.31 [0.12, 0.78]	2008		$\bullet \bullet \bullet \bullet \bullet \bullet \bullet$
Mezzasalma 2016	18	53	43	52	12.4%	0.41 [0.28, 0.61]	2016	-	
Lyra 2016	150	260	82	131	16.2%	0.92 [0.78, 1.09]	2016	-	
Cremon 2018	12	20	16	20	12.0%	0.75 [0.49, 1.14]	2018		$\bullet \bullet \bullet \bullet \bullet \bullet \bullet$
Oh 2019	10	28	17	27	9.4%	0.57 [0.32, 1.01]	2019		
Sadrin 2020	7	40	12	40	6.4%	0.58 [0.26, 1.33]	2020	-	
Martoni 2020	55	113	95	112	15.7%	0.57 [0.47, 0.70]	2020		
Ul-Haq 2022	6	60	16	60	5.9%	0.38 [0.16, 0.89]	2022		
Jung 2022	0	18	5	9	0.8%	0.05 [0.00, 0.78]	2022	-	
Total (95% CI)		662		521	100.0%	0.59 [0.45, 0.76]		•	
Total events	284		331						
Heterogeneity: Tau2 =	0.10; Chi	== 36.7	71, df = 1	0 (P < (0.0001); [3	= 73%		04.00	-d
Test for overall effect:	Z = 4.02 (P < 0.0	0001)					0.1 0.2 0.5 1 2 5 Favours probiotics Favours contro	10

Risk of bias legend

(A) Random sequence generation (selection bias)

(B) Allocation concealment (selection bias)

(C) Blinding of participants and personnel (performance bias) (D) Blinding of outcome assessment (detection bias)

(E) Incomplete outcome data (attrition bias)

(F) Selective reporting (reporting bias)
(G) Other bias

	Probiot	ics	Contr	ol		Risk Ratio		Risk Ratio	Risk of Bias
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI	ABCDEFG
Kabir 2011	18	35	11	35	8.7%	1.64 [0.91, 2.94]	2011		
Choi 2011	30	45	31	45	12.4%	0.97 [0.73, 1.29]	2011		• ••••
Abbas 2014	23	37	16	35	10.5%	1.36 [0.88, 2.11]	2014	+-	$\bullet \bullet \bullet \bullet \bullet \bullet \bullet$
Pineton de Chambrun 2015	46	100	56	100	12.6%	0.82 [0.62, 1.08]	2015	-	
Spiller 2016	135	192	140	187	13.9%	0.94 [0.83, 1.06]	2016	-	
Al-Jassim 2019	4	15	15	15	6.6%	0.29 [0.13, 0.64]	2019		
Helo 2019	47	177	123	170	12.7%	0.37 [0.28, 0.48]	2019	-	
Gayathri 2020	11	52	29	48	8.8%	0.35 [0.20, 0.62]	2020		
Mourey 2022	129	230	152	226	13.8%	0.83 [0.72, 0.97]	2022	-	
Total (95% CI)		883		861	100.0%	0.75 [0.57, 0.99]		•	
Total events	443		573					10 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Heterogeneity: Tau ² = 0.14; Cl	$hi^2 = 72.21$	df = 8	(P < 0.00	0001):1	2 = 89%			0102 05 1 2 5	
Test for overall effect: $Z = 2.06$	(P = 0.04))						0.1 0.2 0.5 1 2 5 Favours probletics Favours contr	10

Risk of bias legend

(A) Random sequence generation (selection bias)

(B) Allocation concealment (selection bias)

(C) Blinding of participants and personnel (performance bias)

(D) Blinding of outcome assessment (detection bias) (E) Incomplete outcome data (attrition bias)

(F) Selective reporting (reporting bias)

(G) Other bias

Efficacy of Probiotics in Irritable Bowel Syndrome: Systematic Review and Meta-analysis Gastroenterology 2023;165:1206-1218

Vivek C. Goodoory, ^{1,2,*} **Mais Khasawneh**, ^{1,2,*} Christopher J. Black, ^{1,2} Eamonn M. M. Quigley, ³ Paul Moayyedi, ⁴ and Alexander C. Ford ^{1,2}

Efficacy of Probiotics Persistence of **Abdominal Bloating or Distension** in IBS

Combination Probiotics vs. placebo

								All Bi	ndobactenarri	Strains
	Probio	tics	Contr	lor		Risk Ratio		Risk Ratio	Risk of Bias	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI	ABCDEFG	
Kim 2003	4	12	10	13	2.3%	0.43 [0.18, 1.02]	2003			
Kajander 2005	29	52	34	51	5.0%	0.84 [0.61, 1.14]	2005			erval; N/A,
Kim 2005	13	24	16	24	4.196	0.81 [0.51, 1.29]	2005		••••••	,
Kim 2006	12	20	15	20	4.2%	0.80 [0.52, 1.24]	2006		•••	
Ouyonnet 2007	92	137	91	137	5.7%	1.01 [0.86, 1.19]	2007	+		
Zeng 2008	15	15	15	15	5.9%	1.00 [0.88, 1.13]	2008	+	•••	
Williams 2009	10	28	16	28	3.4%	0.63 [0.35, 1.13]	2009			
Agrawal 2009	11	17	16	17	4.6%	0.69 [0.47, 1.00]	2009			
Simren 2010	21	37	20	37	4.4%	1.05 [0.70, 1.58]	2010	_		
Michail 2011	3	15	6	9	1.6%	0.30 [0.10, 0.91]	2011	•	••••••	
Sondergaard 2011	20	32	21	32	4.6%	0.95 [0.66, 1.38]	2011	-		
Cui 2012	10	37	16	23	3.3%	0.39 [0.21, 0.70]	2012			
Cha 2012	11	25	12	25	3.3%	0.92 [0.50, 1.67]	2012			
Ko 2013	8	14	7	12	3.0%	0.98 [0.51, 1.89]	2013		••••••	
Begtrup 2013	65	87	51	64	5.7%	1.03 [0.87, 1.22]	2013	+		
Yoon 2014	13	25	15	24	3.9%	0.83 [0.51, 1.35]	2014			
Sisson 2014	50	124	31	62	4.9%	0.81 [0.58, 1.12]	2014		• •••••	
Shavakhi 2014	30	86	33	66	4.7%	0.91 [0.64, 1.30]	2014	-+		
Youn 2015	16	39	14	42	3.5%	1.23 [0.70, 2.18]	2015		•••••	
Wong 2015	4	20	10	22	1.9%	0.44 [0.16, 1.18]	2015		••••••	
Mezzasalma 2016	8	52	43	52	3.1%	0.19 [0.10, 0.36]	2016	•		
Ishaque 2018	19	181	75	179	4.1%	0.25 [0.16, 0.40]	2018			
Bonfrate 2020	4	15	7	10	2.0%	0.38 [0.15, 0.97]	2020			
Skrzydło-Radomańska 2021	7	25	10	26	2.5%	0.73 [0.33, 1.61]	2021			
Turan 2021	21	50	20	50	4.0%	1.05 [0.66, 1.68]	2021		• ••••	
Tuteja 2022	15	24	17	29	4.2%	1.07 [0.69, 1.65]	2022	_	•••••	
Total (95% CI)		1153		1069	100.0%	0.75 [0.64, 0.88]		•		
Total events	501		621							
Heterogeneity: Tau ² = 0.11; Chi	= 112.2	3. df = 3	25 (P < 0.	000013	: P = 789	á.				
Test for overall effect $Z = 3.54$ (O.1 0.2 0.5 1 2 5 10 Favours probletics Favours control		

	Number of trials	Number of patients	RR of persistence of abdominal bloating or distension (95% CI)	P value for the difference	f^2 (P value for χ^2)
I combination probiotics	26	2222	0.75 (0.64-0.88)	<.001	78% (<.001)
VSL#3	5	192	0.65 (0.42-1.02)	.06	52% (.08)
Lactobacillus paracasei ssp paracasei F19, Lactobacillus acidophilus La5, and Bifidobacterium lactis Bb12	3	269	1.02 (0.89–1.18)	.78	0% (.92)
Bifidobacterium animalis DN173 010, Streptococcus thermophilus, and Lactobacillus bulgaricus	2	308	0.86 (0.60–1.26)	.45	71% (.06)
LacClean Gold S	2	130	0.98 (0.67-1.45)	.94	8% (.30)
Duolac 7s	2	76	0.94 (0.61-1.47)	.80	0% (.88)
All Lactobacillus strains	5	723	0.67 (0.43-1.04)	.07	88% (<.001)
All Saccharomyces strains	5	641	0.87 (0.64-1.17)	.34	60% (.04)
Saccharomyces boulardii	3	232	0.97 (0.77-1.23)	.80	0% (.79)
All Bacillus strains	3	212	0.41 (0.31-0.56)	<.001	0% (.83)
All Clostridium strains	1	200	0.97 (0.81-1.16)	.75	N/A
All Bifidobacterium strains	1	122	0.66 (0.49-0.88)	.005	N/A
Direk of Direc					

LIMITATIONS

Few trials were low risk of bias and there was heterogeneity between studies and evidence of publication bias.

Some combinations of probiotics or strains may be beneficial in IBS, but certainty in the evidence (GRADE) is low or very low

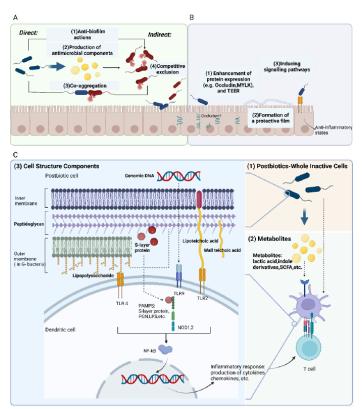
Risk of bias legend

- (A) Random sequence generation (selection bias)
- (R) Allocation concealment (selection bias)
- (C) Blinding of participants and personnel (performance bias)
- (D) Blinding of outcome assessment (detection bias)
- (E) Incomplete outcome data (attrition bias)
 (E) Selective reporting (reporting bias)

Effect of Lactobacillus paracasei CNCM I-1572 on symptoms, gut microbiota, short chain fatty acids, and immune activation in patients with irritable bowel syndrome: A pilot randomized clinical trial

Cesare Cremon¹, Simone Guglielmetti², Giorgio Gargari², Valentina Taverniti², Anna Maria Castellazzi³, Chiara Valsecchi³, Carlotta Tagliacarne³, Walter Fiore⁴, Massimo Bellini⁵, Lorenzo Bertani⁵, Dario Gambaccini⁵, Michele Cicala⁶, Bastianello Germana⁷, Maurizio Vecchi⁸, Isabella Pagano¹, Maria Raffaella Barbaro¹, Lara Bellacosa¹, Vincenzo Stanghellini¹ and Giovanni Barbara¹

United European Gastroenterology Journa 0(0) 1-10 (© Author(s) 2017 Reprints and permissions: sagepub.co.uk/journals/Permissions.nav D0I: 10.1177/2956640617736478 journals.sagepub.com/home/ueg


Lactobacillus paracasei CNCM I-1572 induces a significant reduction in genus Ruminococcus, a significant increase in the fecal short chain fatty acids acetate and butyrate, and a significant reduction in the proinflammatory cytokine interleukin-15 in patients with IBS.

Live bacteria are not required for achieving beneficial effects when utilizing probiotics in treating symptoms of gut disorders (Postbiotics are the non-living components of the microbiome)

«..of further interest is determining if there are <u>functional metabolic</u> <u>changes</u> (measured in the <u>metabolome</u>) associated with microbiome perturbations, beyond simply measuring composition»

Postbiotics

Preparation of inanimate microorganisms and/or their components that confers a health benefit on the host

(Ma L, et al. Nutrients 2023)

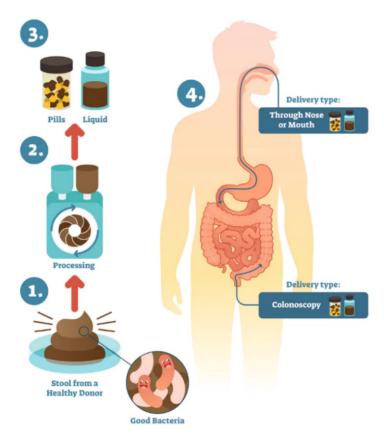
PROTECTIVE MODULATION AGAINST PATHOGENS

Anti-microbial actions:

Lactobacillus and Bifidobacterium → bacteriocins against the invasion of enteroinvasive *E. coli*; exopolysaccharides (EPS) Bifidobacterium bifidum → lactobacilli and other anaerobic bacteria grew more readily and enterobacteria, enterococci, or Bacteroides fragilis are inhibited.

Anti-biofilm actions:

teichoic acid (Lactobacillus strains) → inhibits biofilm formation of pathogens (e.g. *Streptococcus mutans*, *Staphylococcus aureus* and *Enterococcus faecalis*)


FORTIFY THE EPITHELIAL BARRIER

MODULATION OF IMMUNE RESPONSES.

Table 1 Examples of gut microbiota-derived metabolites and their beneficial effects on human health

Metabolite	Pathway	Microbial agent	Health benefits
Butyrate	Carbohydrate	Clostridia	Increased intestinal barrier function (Kelly et al. 2015a, b)
	metabolism	Faecalibacterium prausnitzii	Modulate intestinal macrophage function (Chang et al. 2014)
		Coprococcus catus	Suppression of colonic inflammation (Simeoli et al. 2017)
		Anae ro stipes had rus	Improvements in insulin sensitivity (Khan and Jena 2016)
Propionate	Carbohydrate	Blautia obeum	Suppression of colonic inflammation (Tong et al. 2016)
	metabolism	Coprococcus catus	Decreased innate immune responses to microbial stimulation (Ciarlo et al. 2016)
		Roseburia inulinivorans	Protection from allergic airway inflammation (Trompette et al. 2014)
		Prevotella copri	Improvements in insulin sensitivity and weight control in obese mice (den Besten et al. 2015)
Indole	Tryptophan metabolism	Lactobacillus spp.	Maintenance of host-microbe homeostasis at mucosal surfaces via IL-22 (Zelante et al. 2013)
		Bifidobacterium longum	Increased barrier function (Bansal et al. 2010)
		Bacteroides fragilis	Modulation of host metabolism (Chimerel et al. 2014)
Indole-3- aldehyde	Tryptophan metabolism	Lactobacillus spp.	Maintenance of mucosal homeostasis and intestinal barrier function via increased IL-22 production (Zelante et al. 2013)
			Protection against intestinal inflammation in mouse models of colitis (Lamas et al. 2016)
Indole-3- propionate	Tryptophan metabolism	Clostrid ium sporogenes	Maintenance of intestinal barrier function and mucosal homeostasis (Venkatesh et al. 2014)
			Increased production of antioxidant and neuroprotectant products (Hwang et al. 2009)
10-hydroxy-cis-	linoleic acid	Lactobacillus spp.	Maintenance of intestinal barrier function (Miyamoto et al. 2015)
12-octadecoate	derivative) (lipid		Decreased inflammation (Kaikiri et al. 2017)
	metabolism		Increased intestinal IgA production (Kaikiri et al. 2017)

Fecal Microbiota Transplantation (FMT)

Clinical Microbiology and Infection 27 (2021) S1-S21

Contents lists available at ScienceDirect

Clinical Microbiology and Infection

journal homepage: www.clinicalmicrobiologyandinfection.com

Guidelines

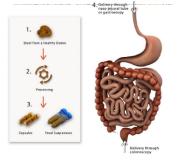
European Society of Clinical Microbiology and Infectious Diseases: 2021 update on the treatment guidance document for *Clostridioides difficile* infection in adults

Contents lists available at ScienceDirect

The Lancet Regional Health - Europe

journal homepage: www.elsevier.com/lanepe

Research paper


The use of Faecal Microbiota Transplantation (FMT) in Europe: A Europe-wide survey

Indication	n*	%
Routine clinical indications. ($n = 30$ centres)		
Clostridioides difficile infection (CDI):		
Recurrent CDI	30	100%
Antibiotic refractory CDI	27	90%
Critical CDI	14	47%
Experimental (outside trials) indications. ($n = 30$ centres)		
Ulcerative colitis	4	13%
Multidrug resistant organisms carriage	3	10%
Graft versus host disease	2	7%
Irritable bowel syndrome	1	3%
Pouchitis	1	3%
Antibiotic-associated diarrhoea, not CDI.	1	3%
Investigational (within trials) indications. ($n = 24$ centres)		
Ulcerative colitis	11	46%
Irritable bowel syndrome	7	30%
Multidrug resistant organisms carriage	5	21%
Recurrent CDI	3	13%
Index CDI	3	13%
Refractory CDI	2	8%
Crohn's disease	2	8%
Pouchitis	2	8%
Graft versus host disease	2	8%
Obesity	2	8%
Spondyloarthropathy	2	8%
Liver cirrhosis, hepatic encephalopathy	2	8%
Critical CDI	1	4%
Antibiotic-associated diarrhoea, not CDI	1	4%
Parkinson's disease	1	4%
Chemotherapy-related diarrhoea	1	4%
Non-alcoholic fatty liver disease (NAFLD)	1	4%
Chronic fatigue syndrome	1	4%
Microscopic colitis	1	4%

FMT: Evidenza per indicazione al FMT nel 2023

	Metanalyse s	RCTs	Open label trials	Case series/repo rts	Efficacy data
C. difficile infection	+++	+++	++++	****	Outstanding
Ulcerative colitis	+	+	++	+++	Promising
Hepatic encefalopathy		+		+	Quite promising
Metabolic syndrome		+		+	Quite promising
Crohn's disease			+	+	Poor
IBS		+	+	+	Poor
Multi-resistant infections			+	+	Poor
Autism			+	+	Poor
GVHD				+	Poor

Recruitment and Screening of the donors: physical and laboratory investigations by blood and stool analysis and culture to rule out organic disorders, infectious agents and contagious diseases, most importantly, HIV, viral hepatitis, syphilis, malaria, tuberculosis and trypanosomiasis.

(Mazzawi T, 2022)

It is advisable that the donors have not recently used antibiotics, travelled to tropical areas, had high-risk sexual behavior or had a bout of gastroenteritis or diarrhea within 4 weeks of donation

It remains to be investigated whether **single or mixed donors** is the preferred choice and at which time intervals should FMT be performed.

Fresh/frozen **fecal material** might be superior to frozen **oral capsules** in improving IBS global symptoms and having lasting alteration of gut microbiota

The beneficial effect of FMT on IBS symptoms tends to fade over time

Risk of transferring microbial pathogens, or undesired disease phenotypes, such as obesity, diabetes, chronic and cardiovascular diseases as well as metabolic syndromes.

Lowering the risk: <u>defined preparations of fecal microbiota</u> with their <u>constituent therapeutic factors</u> may be a suitable alternation. In addition, <u>mixtures of defined species or strains</u>, or cocktails of microbiota-derived molecules targeting specific microbial species or pathways that are enriched in the disease state in an effort to treat or prevent various

common d

FMT is a promising treatment for many diseases but still, there remains a lot that is unknown and missing knowledge gaps that has prevented this therapeutic modality from obtaining FDA approval for treatments beyond CDI

The exact because o

involvement or new species or gut micropiota round in healthy donor reces, and the presentation of peptides from the donor that modify host immune responses

(Gianotti & Moss, 2017)

might be

profiles.

FMT increased the total fecal SCFAs levels, namely butyric acid

(van Leeuwenhoek A, 2020)

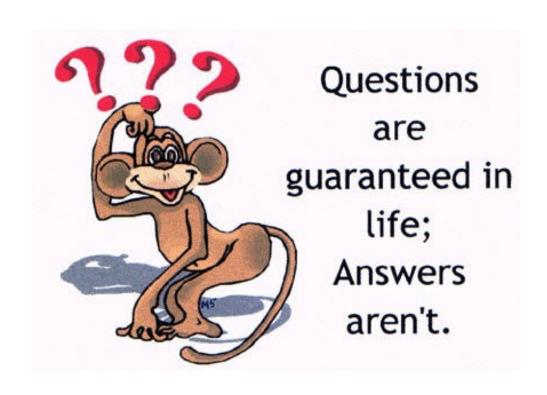
FVT (Fecal Viroma Transplantation)

Importance of phages in **eliminating the gastroenteritis-associated pathogenic bacteria**, and in modulating the beneficial bacteria by **adding new functions** such as metabolites biosynthesis (SCFA, H₂S) in the management of metabolic and neurological disorders

Potential applications of bacteriophages include designing phage to "correct" microbiota dysbiosis, creating phage therapies to target certain bacterial species that causes a gut disease, and developing compounds that block phage induction to inhibit the growth of certain bacteria

A programmed phage λ can be used to repress E. coli genes in the mammalian gut.

Oral delivery using an aqueous-based encapsulation formulation.


(Hsu BB, 2020)

The prophage-encoded virulence factors remain a **safety issue**, which limits the use of phages in medicine

(Rasmussen TT, 2020)

Essential data for the approval of phages as antibacterial drugs still needed and studies to address these points are necessary

Thank you for your attention!

La spinta migliore, viene da te

Most studies: massive **impact on the bacterial load** and **alfa diversity** of the gut microbiota composition in the samples taken after MBP

No unique general pattern of microbial modification has emerged;

Duration of the effect: most studies report a short effect on microbial composition, up to 2 weeks; in some cases up to 4 weeks after colonoscopy.

Almost restitutio ad integrum of the microbiota occurs a few weeks after MBP in <u>healthy</u> <u>patients</u>

Overall, studies suggest that microbiota variations seem more sustained in patients suffering from diseases per se associated to intestinal dysbiosis, such <u>IBS or IBD</u>.

(Drago L, 2019)

These **conflicting results** are probably due to the <u>small number</u> of subjects, the inclusion of <u>healthy and diseased</u> subjects, the lack of a non-procedure <u>control group</u>, and a lack of analytical depth in these studies. Different ways of <u>sample collection</u>

