

Endoscopy

Environmental footprint of gastrointestinal endoscopy services: a systematic review

Britta Vegting, Demi Gerritsen, Ceyda B Izci, Nicole Hunfeld, Erik M van Raaij, Wilco van den Heuvel, Pieter J de Jonge, Peter D Siersema.

Affiliations below.

DOI: 10.1055/a-2739-4080

Please cite this article as: Vegting B, Gerritsen D, Izci C B et al. Environmental footprint of gastrointestinal endoscopy services: a systematic review. *Endoscopy* 2025. doi: 10.1055/a-2739-4080

Conflict of Interest: P. D. Siersema is Editor in Chief of *Endoscopy*. None of the other authors has any conflict of interest to declare.

This study was supported by Funded internally by Erasmus University Medical Center Convergence Sustainable Health Program.

Abstract:

Background – Gastrointestinal (GI) endoscopy is a significant contributor to healthcare-related climate change due to high procedure volumes, intensive decontamination processes, and reliance on single-use products. This systematic review aims to synthesize the current evidence on the environmental impact of GI endoscopy.

Methods – MEDLINE, Embase and Web of Science were systematically searched up to May 2025 for studies assessing the environmental impact of GI endoscopy. Two reviewers independently performed study selection, data extraction, and quality assessment. The PRISMA guidelines were followed.

Results – A total of 28 studies were included. Most studies assessed carbon emissions; only five studies (18%) examined environmental impacts beyond greenhouse gas emissions. The largest contributors to emissions were patient travel, energy use, and procedure-related products, while waste had limited impact. Overall, scope 3 emissions accounted for the majority of total emissions, though reporting across different emission scopes was inconsistent. In line with heterogeneity in methodology, per-procedure emissions ranged from 5.4 to 73.2 kg CO₂ equivalent. Twenty-one studies (75%) were judged to have a high risk of bias.

Discussion – Current evidence on the environmental impact of GI endoscopy services is fragmented, methodologically inconsistent, and often limited in coverage. Emissions were dominated by patient travel, energy use and procedure-related products. Broader and more standardized environmental assessments are needed to guide the transition to low-carbon, sustainable GI endoscopy.

Corresponding Author:

Britta Vegting, Erasmus MC University Medical Center Rotterdam, Gastroenterology and Hepatology, Dr Molewaterplein 40, 3015GD Rotterdam, Netherlands, b.vegting@erasmusmc.nl

Contributors' Statement: Britta Vegting: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Writing - original draft, Writing - review & editing. Demi Gerritsen: Data curation, Formal analysis, Investigation, Methodology, Writing - review & editing. Ceyda B. Izci: Formal analysis, Methodology, Visualization, Writing - review & editing. Nicole Hunfeld: Conceptualization, Funding acquisition, Methodology, Supervision, Writing - review & editing. Erik M. van Raaij: Methodology, Supervision, Writing - review & editing. Wilco van den Heuvel: Methodology, Supervision, Writing - review & editing. Pieter J.F. de Jonge: Methodology, Supervision, Writing - review & editing. Peter D. Siersema: Conceptualization, Methodology, Supervision, Writing - review & editing.

Affiliations:

Britta Vegting, Erasmus MC University Medical Center Rotterdam, Gastroenterology and Hepatology, Rotterdam, Netherlands
Demi Gerritsen, Erasmus MC University Medical Center Rotterdam, Gastroenterology and Hepatology, Rotterdam, Netherlands
Ceyda B Izci, Erasmus MC University Medical Center Rotterdam, Gastroenterology and Hepatology, Rotterdam, Netherlands
[...]
Peter D Siersema, Erasmus MC University Medical Center Rotterdam, Gastroenterology and Hepatology, Rotterdam, Netherlands

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 **Environmental footprint of gastrointestinal endoscopy services: a
2 systematic review**

3

4 **Authors:**

5 B. Vegting¹, D. Gerritsen¹, C. B. Izci¹, N. G. M. Hunfeld^{2,3}, E. M. van Raaij⁴, W. van den Heuvel⁵, P. J. F.
6 de Jonge¹, P. D. Siersema¹

7 **Affiliations:**

- 8 1. Erasmus MC University Medical Center Rotterdam, Department of Gastroenterology and
9 Hepatology
- 10 2. Erasmus MC University Medical Center Rotterdam, Department of Intensive Care
- 11 3. Erasmus MC University Medical Center Rotterdam, Department of Hospital Pharmacy
- 12 4. Erasmus School of Health Policy & Management, Erasmus University Rotterdam
- 13 5. Econometrics Institute, Erasmus School of Economics, Erasmus University Rotterdam

14

15 **Author contributions:**

16 PDS conceived the study. BV collected the data. BV, DG and CBI processed and analyzed the data. All
17 other authors provided oversight. BV wrote the first draft of the manuscript. All authors interpreted
18 the data and critically edited the final manuscript.

19

20 **Competing interest:**

21 P. D. Siersema is Editor in Chief of Endoscopy.

22

23 **Funding:**

24 Funded internally by Erasmus University Medical Center Convergence Sustainable Health Program

25

26 ABSTRACT

27 **Background**

28 Gastrointestinal (GI) endoscopy is a significant contributor to healthcare-related climate change due to high
29 procedure volumes, intensive decontamination processes, and reliance on single-use products. This systematic
30 review aims to synthesize the current evidence on the environmental impact of GI endoscopy.

31 **Methods**

32 MEDLINE, Embase and Web of Science were systematically searched up to May 2025 for studies assessing the
33 environmental impact of GI endoscopy. Two reviewers independently performed study selection, data
34 extraction, and quality assessment. The PRISMA guidelines were followed.

35 **Results**

36 A total of 28 studies were included. Most studies assessed carbon emissions; only five studies (18%) examined
37 environmental impacts beyond greenhouse gas emissions. The largest contributors to emissions were patient
38 travel, energy use, and procedure-related products, while waste had limited impact. Overall, scope 3 emissions
39 accounted for the majority of total emissions, though reporting across different emission scopes was
40 inconsistent. In line with heterogeneity in methodology, per-procedure emissions ranged from 5.4 to 73.2 kg
41 CO₂ equivalent. Twenty-one studies (75%) were judged to have a high risk of bias.

42 **Discussion**

43 Current evidence on the environmental impact of GI endoscopy services is fragmented, methodologically
44 inconsistent, and often limited in coverage. Emissions were dominated by patient travel, energy use and
45 procedure-related products. Broader and more standardized environmental assessments are needed to guide
46 the transition to low-carbon, sustainable GI endoscopy.

47 INTRODUCTION

48 The healthcare industry is known to have a substantial impact on the environment through its use of resources
49 (such as minerals, metals, fossil fuels and fresh water), waste generation and pollution of air, soil, and water[1].
50 More specifically, the healthcare sector is responsible for approximately 5% of global greenhouse gas (GHG)
51 emissions, contributing significantly to climate change with serious threats to ecosystems and human health[1].

52 Gastrointestinal (GI) endoscopy contributes considerably to healthcare-related climate change, primarily due to
53 its resource-intensive decontamination procedures, substantial waste production, high volume of procedures,
54 and reliance on single-use, non-recyclable products[2, 3]. However, the environmental impact, or
55 "environmental footprint", of GI endoscopy remains incompletely quantified.

56 Environmental impact of healthcare services is commonly assessed using carbon footprinting and Life Cycle
57 Assessment (LCA). Carbon footprinting focuses on Global Warming Potential (GWP), quantifying GHG emissions
58 in carbon dioxide equivalents (CO₂e)[4, 5]. Emissions are typically categorized by the GHG Protocol into scope 1
59 (direct emissions from facility-controlled sources), scope 2 (indirect emissions from purchased energy), and
60 scope 3 (all other indirect emissions, including supply chains, travel, and waste)[6]. Scope 3 emissions cover over
61 70% of healthcare-related GHG emissions[7]. An LCA offers a more comprehensive approach, evaluating
62 environmental impact across defined stages of a product's or process's life cycle, which may extend from raw
63 material extraction to its disposal ('cradle-to-grave') in accordance with ISO 14040 and ISO 14044 standards[8].
64 It involves defining a functional unit, setting system boundaries, and compiling an inventory of inputs and
65 outputs using process-based or financial activity data. Environmental impacts are then quantified and
66 categorized across multiple dimensions such as GHG emissions, ecotoxicity and resource depletion[9]. Results
67 are analyzed in terms of completeness, consistency, sensitivity, and uncertainty. Both LCA's and carbon
68 footprinting are able to identify environmental hotspots and support environmental performance over time.

69 Recognizing the need for sustainable practices in GI endoscopy, the European Society of Gastrointestinal
70 Endoscopy (ESGE) and the European Society of Gastroenterology Nurses and Associates (ESGENA) issued a
71 position statement in 2022[10]. This statement calls for greater awareness of the environmental footprint of GI
72 endoscopy and provides guidance on reducing its environmental impact. It also emphasizes the necessity of
73 high-quality research to quantify the environmental impact of GI endoscopy and to develop actionable
74 strategies for mitigating its environmental footprint.

75 Previous reviews of the environmental sustainability of GI endoscopy predominantly focus on carbon emissions,
76 often without comprehensively addressing the broader environmental impact[11-15]. Moreover, these reviews
77 in general lack a systematic methodology and insufficiently appraise the quality of the studies included.

78 The present systematic review aims to provide a comprehensive overview of the existing literature on the
79 environmental impact of GI endoscopy services. Special attention is given to the carbon footprint of GI
80 endoscopy, with emissions categorized across emission scopes 1, 2, and 3. By synthesizing the available
81 evidence, this review aims to identify key contributors to the environmental footprint of GI endoscopy and key
82 knowledge gaps to inform future research and sustainability efforts in this field.

84 METHODS

85 Eligibility criteria and outcomes

86 This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews
87 and Meta-analysis (PRISMA) guidelines[16]. The study protocol was registered in the International Prospective
88 Register of Systematic Reviews (PROSPERO, National Institute for Health and Care Research, York, United
89 Kingdom), identification number CRD420250599809. A glossary of terminology used in this systematic review is
90 provided in **Table 1**.

91 We included peer-reviewed studies assessing the environmental impact of GI endoscopy, with no restrictions on
92 department size or geographical location. Included studies addressed at least one of the sixteen environmental
93 impact categories, as defined by the European Commission[9], or addressed waste, patient or staff travel, or
94 energy consumption. Only studies presenting original data, published in English with full text access were
95 included. Studies comparing endoscopy services with other care pathways were not included.

96 The primary outcome was the environmental footprint of GI endoscopy departments, categorized according to
97 the European Commission's environmental footprint impact categories. Secondary outcomes included the
98 comparison of GHG emissions across three emissions scopes (scope 1, 2 and 3), with a focus on identifying key
99 environmental hotspots, and identifying opportunities for future environmental impact studies in the field of GI
100 Endoscopy.

101 Search strategy

102 A comprehensive literature search was conducted by a professional librarian across MEDLINE, Embase (OVIDSP)
103 and Web of Science databases through November 12, 2024, with an updated search through May 25, 2025.
104 Custom search queries were developed for each database. The following search terms were used: endoscopy,
105 digestive endoscope or digestive tract endoscopy, different types of GI endoscopy procedures, combined with
106 environment, climate change, global warming, GHG, carbon emissions, carbon footprint, pollution,
107 sustainability, fossil fuels, and specific environmental footprint impact categories such as particulate matter,
108 ionizing radiation, ocean acidification, eutrophication, ozone depletion, land use, soil quality, ecotoxicity, water
109 use, resource use or waste disposal. Reference lists of included studies and relevant reviews were screened for
110 additional eligible studies. A detailed list of the search strategy is shown in **Supplementary table 1**.

111 Study selection

112 Duplicate records were removed using Endnote (Clarivate Analytics, Philadelphia, United States) and screened
113 using Covidence software (Covidence systematic review software, Veritas Health Innovation, Melbourne,
114 Australia). Two reviewers (BV, DG) independently screened titles and abstracts. Full-text articles were then
115 assessed for inclusion, with disagreements resolved by consensus. Exclusion reasons were documented and are
116 summarized in **Supplementary figure 1**.

117 Data extraction

118 Data extraction was performed in duplicate by two reviewers (BV, DG), including extraction of study details,
119 coverage, environmental assessment methods, system boundaries, and environmental outcomes.
120 Environmental impact was quantified as results from one or more environmental impact categories. For

121 example: the impact category GWP, measured in GHG emissions, was recorded in kilograms (kg) of CO₂e. GHG
122 emissions were further categorized by GHG emission scope. Results beyond GHG emission scope such as energy
123 consumption (kWh) and waste generation (kg) were reported separately. Results from studies reporting on
124 sustainability interventions with two or more data points were reported as a range. Due to methodological
125 heterogeneity, a meta-analysis was not feasible.

126 **Quality assessment**

127 Risk of bias was assessed using the Center for Environmental Evidence Critical Appraisal Tool (CEECAT), version
128 0.3[17]. The seven CEECAT criteria were prespecified for endoscopy sustainability studies (**Supplementary Table**
129 **2**) and independently rated by two reviewers (BV, DG), with discrepancies resolved by consensus. Studies were
130 classified as low, medium, or high risk of bias, with overall risk determined by the highest score. To address
131 methodological variability, the ESGE recently published a position statement outlining minimum criteria for
132 environmental impact assessments in GI endoscopy, including a checklist to guide study design, reporting, and
133 interpretation (E-SPARE)[18]. This checklist was used by two reviewers (BV, CBI) to assess these criteria for all
134 included studies. Additionally, for studies reporting LCA's, a *pro forma* quality assessment scoring system
135 adopted from Drew et al. (2021) was used, based on Weidema's guidelines for critical review of LCAs and
136 operationalized by Kouwenberg et al[19-21]. This scoring system consists of sixteen appraisal criteria covering
137 the four phases of LCA and addresses a range of quality indicators, including internal and external validity,
138 transparency, consistency, and bias. A maximum of 35 points could be allocated. Points were assigned for each
139 study by two reviewers (BV, CBI), and a score out of 35 was calculated to provide an indication of overall study
140 quality. All discrepancies were resolved by consensus.

141 RESULTS

142 Study characteristics

143 A total of 2,939 references were identified through database searches (**Supplementary figure 1**) and one
144 through citation screening. After removal of 1,172 duplicates, 1,768 records underwent title and abstract
145 screening. A total of 132 abstracts appeared relevant, and the full papers of these abstracts were assessed. After
146 application of the inclusion and exclusion criteria, a total of 107 articles were excluded, including 17 studies
147 focusing on direct radiation exposure and 6 on room air quality. A total of 28 studies were included[22-49].
148 These articles were published between 2008 and 2025 (79% in 2023 or later) and originated from Europe (19
149 studies), the USA (5 studies), and Australasia (4 studies). The studies were primarily conducted in tertiary
150 centers. One study was conducted during the COVID-19 pandemic[22]. Full study characteristics and results are
151 summarized in **Table 2**.

152 Study design & methodology

153 Study characteristics

154 Of the 28 studies, nine used LCAs[28, 37-42, 44, 45], ten were prospective studies[22-24, 26, 30, 32, 33, 35, 46,
155 47] with five of them focusing on sustainability interventions[22, 23, 26, 30, 35], seven were retrospective
156 studies[25, 27, 31, 36, 43, 48, 49], and one reported a survey[34]. Twenty-three studies assessed one or more
157 environmental impact categories, with GWP reported in all (**Figure 1**)[22-32, 34, 36-42, 44, 45, 47, 49]. Fresh
158 water use[24, 38, 39, 45, 46] and energy consumption[24, 26, 27, 31, 36, 47] were assessed in five and six
159 studies, respectively. Seven studies covered entire departments[31, 36, 47] or procedures[25, 32, 37, 44], while
160 eleven focused on specific products, including capsule endoscopy[32], endoscopy devices[40, 42], and
161 endoscopes[38, 39, 45].

162 System boundaries

163 Twelve studies adopted a "cradle-to-grave" approach, while two used "cradle-to-gate", meaning the coverage of
164 the life cycle of products only up to the product's departure from the manufacturing facility ("gate"). The
165 remaining studies focused on travel, electricity consumption and/or waste generation. Of ten relevant GHG
166 Protocol components, two lacked dedicated assessment (**Figure 2**). Scope 3 emissions inclusions were
167 inconsistent, such as patient and staff travel, and manufacturing of medical products and pharmaceuticals
168 (**Supplementary table 3**).

169 Data sources

170 Two studies used a hybrid approach combining financial activity and process data[36, 45], while others used a
171 process-based approach. Emission factors were drawn from a range of data sources, including the GHG protocol
172 and national databases. Emissions from electricity consumption were based on the energy mix in each country,
173 with one study noting a 32% reduction in CO₂ emissions when switching to 100% renewable energy[31]. An
174 overview of study methods is presented in **Supplementary Table 4**.

175 Study results

176 Carbon footprint of entire departments and procedures

177 Three studies examined the carbon footprint of GI endoscopy departments. Of these, Lacroute et al. reported an
178 annual GHG emission of 241.2 tons CO₂e for 2021, or 28.4 kg CO₂e per procedure, with the largest contributors
179 being patient and staff travel (45%) and medical and non-medical products (32%)[36]. Rughwani et al reported
180 GHG emissions of 3,244 patients undergoing 3,873 procedures in an ambulatory endoscopy clinic in India,
181 showing a total carbon footprint of 148.9 tons CO₂e, or 38.5 kg CO₂e per procedure, of which 83% were
182 emissions from patient travel[47]. Henniger et al. reported 62,720 kg CO₂e annually in a mid-sized department
183 (8,000 to 8,500 procedures per year), equating to 7.8–8.4 kg CO₂e per procedure, excluding patient travel and
184 medical and non-medical products[31].

185 Four studies investigated the carbon footprint of a specific endoscopic procedure. Elli et al. reported 5.4 kg CO₂e
186 per gastroscopy and 6.7 kg CO₂e per colonoscopy, not including travel of patients or staff, or medical
187 products[25]. Lämmer et al. reported 56.4 kg CO₂e per colonoscopy, including transport of patients and staff,
188 and 14.2 kg CO₂e when excluding transport[37]. Major contributors were transportation of patients and staff
189 (76.5%) and the use of single-use products (13.5%). Another study reported 5.6 kg CO₂e per colonoscopy,
190 emphasizing the significance of patient travel and bowel preparation pharmaceuticals[32]. Colon capsule
191 endoscopy had lower emissions compared to colonoscopy, where patient travel contributed up to 80% in that
192 study. Pioche et al. found even higher numbers for small bowel capsule endoscopy, with patient travel
193 contributing up to 94.7% of total emissions[44].

194 Scope 1 and 2 emissions

195 Three studies evaluated scope 1 emissions, with heating-related CO₂ emissions ranging from 2.23 kg CO₂e to 4.8
196 kg CO₂e per procedure [31, 36, 47]. Scope 2 emissions from energy use were assessed in six studies, with
197 significant variability[24, 26, 27, 31, 36, 47]. Henniger et al. reported zero emissions due to the use of renewable
198 energy while other studies reported electricity-use and related emissions ranging from 0.2–5.5 kWh or 0.1–1.4 kg
199 CO₂e per procedure (**Supplementary Table 5**)[31]. One study reported 19.8 kWh or 7.4 kg CO₂e per
200 procedure[24].

201 Scope 3 emissions

202 Ten studies[28, 29, 32, 38–42, 45, 49] quantified the environmental impact of scope 3 emissions of medical
203 products, with reusable endoscopes generally having a much lower footprint per procedure than single-use
204 models. For example, Le et al. concluded that single-use duodenoscopes produced 47 times more GHG
205 emissions per procedure than reusable duodenoscopes[38]. Additionally, endoscopy devices such as biopsy
206 forceps and snares generated considerable emissions, with biopsy-related emissions also being notable[40, 42].
207 Resecting colonic adenomas by endoscopic submucosal dissection (ESD) generates almost double the amount of
208 GHG compared to piecemeal endoscopic mucosal resection (P-EMR), mostly because ESD is a more complex
209 procedure and therefore generally takes place in expert centers, generating a higher carbon footprint for patient
210 travel[29]. An LCA reported 0.3 kg CO₂e for processing of GI biopsies[28]. Another study showed that using an
211 innovative tool called EndoFaster to analyze gastric juice during upper endoscopy instead of standard biopsy
212 sampling can reduce gastric biopsies by 50% and CO₂ emissions by 44%[49]. Another study describing an LCA of
213 sterile water bottles during colonoscopies concluded that emissions varied mostly per disposal method, totaling
214 0.2 kg per bottle for landfilling, 0.3 kg for recycling and 0.4 kg for incineration[41]. Travel emissions ranged from
215 0.1–1.94 kg CO₂e for staff[34, 36, 44] to 6.6–18.4 kg CO₂e for patients[32, 34, 36, 44, 47], with patient travel
216 being a significant contributor to the carbon footprint of departments (up to 45%) or procedures like capsule

217 endoscopy (up to 95%) (**Supplementary Table 6**). Waste disposal per procedure, quantified in twelve studies[22-
218 24, 30, 33, 35-37, 43, 46-48], ranged from 0.3-3.6 kg, with studies varying in types of waste considered (general
219 waste, infectious waste, recyclables, sharps waste) and disposal methods used (landfill, incineration, recycling)
220 (**Figure 3, Supplementary Table 7**).

221 **Analysis of carbon footprint contributions**

222 Carbon footprint contributions varied significantly across studies. For endoscopy departments, patient and staff
223 travel was the leading contributor, followed by single-use products and energy use. Climate control and room
224 lighting were the primary energy sources. Waste generation played a minor role in overall emissions. For single-
225 use products, manufacturing was the primary contributor, while for reusable products, reprocessing
226 (decontamination) had the most impact.

227 **Study quality and reporting of evidence**

228 A total of 21 (75%) studies[23, 26, 27, 29-35, 39-46, 48, 49] were considered to have a high risk of bias, primarily
229 due to potential confounding factors and measurement bias caused by failure to blind study participants and/or
230 study outcome assessors, or by omitting certain processes from the system boundary, resulting in
231 underreporting of environmental impact. When applying the E-SPARE checklist criteria on reporting of
232 endoscopy sustainability studies to all included studies, we found that 17 studies (61%) adequately reported on
233 most (>50%) criteria. Study objectives, system boundaries and emission factor sources were reported in 20
234 (71%), 23 (82%), and 21 (75%) studies, respectively. However, 18 studies (64%) did not provide a clear functional
235 unit, and 19 studies (68%) provided no justification for chosen environmental impact assessment methods. Only
236 five studies[25, 30, 31, 34, 47] (18%) reported GHG emissions according to the three emission scopes, and five
237 studies[28, 29, 36, 44, 45] (18%) reported an uncertainty assessment. The quality of the LCA studies, which were
238 additionally assessed using a *pro forma* quality assessment scoring system, ranged from moderate to high (66-
239 84%). However, both internal and external validity were compromised by limited transparency. Three of ten LCA
240 studies [28, 38, 41] conducted sensitivity analyses, revealing significant variability in results (up to 20%). Seven
241 studies lacked clear justification of the functional unit, and nine studies failed to report the significance of
242 exclusions or assumptions. An overview of risk of bias and quality assessment of included studies can be found in
243 **Supplementary Table 2, 8 and 9**.

244 **DISCUSSION**245 **Main findings**

246 This systematic review highlights substantial variability in the estimated carbon emissions per GI endoscopy
247 procedure, ranging from 5.43 kg to 73.2 kg CO₂e. Despite substantial differences in methodology and coverage,
248 three consistent hotspots emerged from included studies: patient travel, energy consumption, and use of single-
249 use products.

250 With approximately 134 million GI endoscopy procedures performed globally each year[50], extrapolated
251 annual emissions range from 727 million to 9.8 billion kg CO₂e[51]. Travel-related emissions accounted for 45-
252 95% of per-procedure totals, suggesting that integrating telemedicine for pre- and post-procedural
253 consultations, where clinically appropriate, could substantially reduce this burden. In addition, variability in
254 emissions from both patient and staff commuting highlights the potential value of decentralizing services.
255 Locating endoscopy closer to patients' homes, such as through satellite centers or regional hubs, may further
256 reduce travel-related emissions while maintaining access to care. Energy use—particularly in procedure rooms
257 and reprocessing areas—was another major contributor. One study reported a total energy consumption of 19.8
258 kWh per day, almost 3-fold higher than other studies[24]. This study included energy use in pre-procedure and
259 post-procedure areas, while other studies excluded this from their analysis, possibly explaining this
260 difference[25-27]. Transitioning to renewable energy sources, as demonstrated in selected centers, can
261 potentially reduce energy emissions to near zero[31]. However, implementation must consider the local energy
262 mix and institutional infrastructure. Single-use products were another major contributor. High volumes of
263 single-use biopsy forceps, polypectomy devices, single-use endoscopes and sterile packaging contribute
264 significantly to material use, manufacturing emissions, and waste incineration. While single-use products have
265 three to ten times higher life cycle emissions than reusable products, persistent concerns around infection
266 control and reprocessing capacity continue to drive reliance on single-use products[52, 53]. Although waste
267 generation ranged from 0.5 to 3.5 kg per procedure, it generally contributed to less than 3% of total
268 departmental emissions[36, 47].

269 Emissions varied with procedure type, use of single-use versus reusable products, institutional waste policies,
270 and local energy sources. Similar variability has been observed in other resource-intensive clinical environments,
271 such as intensive care units and operating rooms[54, 55]. Only four of the twenty-eight studies[37-39, 45]
272 assessed environmental impacts beyond GHG emissions (e.g., water use, ecotoxicity, or resource depletion), and
273 three studies examined the environmental footprint of entire endoscopy departments. Moreover, reporting
274 across the GHG Protocol's three emission scopes was inconsistent. Scope 3 emissions were reported in 22
275 studies (81%), yet coverage remained incomplete. Potentially important contributors such as pharmaceuticals
276 and chemicals were mostly not included.

277 **Strengths**

278 This review offers a comprehensive synthesis of the environmental impact of GI endoscopy, encompassing a
279 broad range of environmental indicators and methodological approaches. By aligning our analysis with the GHG
280 Protocol, we provide a structured perspective on emissions across procedural and departmental levels. The
281 systematic and transparent review methodology, combined with a critical appraisal of study quality, enhances
282 the rigor and robustness of our findings.

283 **Limitations**

284 Despite growing interest in the environmental sustainability of endoscopy, the current evidence base remains
285 limited. Many studies focused narrowly on specific elements—such as waste, energy use, or individual devices—
286 without accounting for the full procedure or departmental context. Substantial methodological heterogeneity,
287 unclear system boundaries, and limited transparency in data sources hinder comparability. Reported footprints
288 varied depending on data sources and regional assumptions; studies based on fossil-fuel-dominated energy
289 mixes, including full life cycle impacts, or single-use products, generally reported higher emissions than those
290 with narrower boundaries or cleaner energy assumptions. Differences in reprocessing protocols, waste
291 management, and product lifespan add further uncertainty. Comparative studies often overlooked shared
292 resource use, potentially underestimating total environmental impact. Risk of bias was assessed using the
293 CEECAT tool, the only instrument currently targeting sustainability studies. As a 2023 prototype tool without
294 formal validation in healthcare sustainability research, CEECAT raises concerns about construct validity. To
295 address this, we operationalized the criteria for endoscopy sustainability studies, applied dual independent
296 review with consensus, and complemented CEECAT with the ESGE E-SPARE checklist and an LCA appraisal
297 framework to provide a broader assessment of study quality. These limitations highlight a broader
298 methodological gap, as validated tools for assessing study quality in sustainability research are currently lacking.

299 **Implications for practice, policy and future research**

300 Sustainable transformation of GI endoscopy must be informed by high-quality, system-wide assessments.
301 Current research is mostly fragmented, focusing on isolated components such as waste or energy. A life cycle
302 perspective is essential to identify trade-offs—for instance, interventions that reduce waste may inadvertently
303 increase water or energy use.

304 The recent ESGE position statement on sustainability in endoscopy (E-SPARE) provides an important step toward
305 more standardized and transparent reporting[18]. However, in our systematic review, no study reported on all
306 E-SPARE reporting criteria. Furthermore, harmonization must extend beyond reporting alone. Standardization
307 of assessment methods is essential to improve comparability across studies and support benchmarking of
308 sustainability interventions across institutions and countries. Only through consistent, comprehensive
309 measurement, the field can assess progress and identify effective decarbonization strategies. To improve the
310 quality and comparability of future studies, environmental assessments in GI endoscopy should follow
311 standardized methods such as LCA and the GHG Protocol, in line with ESGE's E-SPARE reporting criteria. Where
312 feasible, studies should account for the full life cycle of products and processes, report impacts per procedure,
313 and transparently document data sources and assumptions. Comprehensive inclusion of scope 1, 2 and 3
314 emissions—particularly scope 3—is essential. Publishing GI-specific methodological details will further improve
315 reproducibility and support the development of best practices.

316 **Conclusion**

317 Current evidence on the environmental impact of GI Endoscopy services is fragmented, methodologically
318 inconsistent, and often limited in coverage. Emissions are dominated by patient travel, energy use, and
319 procedure-related products, while waste contributes comparatively less. Broader and more standardized
320 environmental assessments are essential to support the transition to low-carbon, sustainable GI endoscopy.

321 **TABLES**322 **Table 1 – Glossary of terminology used in this systematic review**

Term	Definition/description
Carbon dioxide equivalent (CO ₂ e)*	Standardized metric to quantify emissions of various greenhouse gases (GHGs) based up on their global warming potential relative to carbon dioxide (CO ₂)
Carbon footprint*	Total set of greenhouse gas emissions generated directly and indirectly by an individual, event, organization or product
Endoscopy device	Products typically used during endoscopy procedures, e.g. biopsy forceps, polypectomy snare, hemostatic clips
Environmental footprint	Method that quantifies how much natural resources are consumed by an individual, event, organization, or product. Can be broken down into multiple impact categories, such as resource depletion, land use, or toxicity[56]
Fossil fuel*	Fuel derived from fossilized hydrocarbon deposits, primarily composed of carbon. Examples include coal, petroleum, and natural gas
Functional unit*	The measure of a product or system determined by the performance it delivers in its intended use (i.e., item or process that is being measured)
Global warming potential (GWP)*	Measure developed to quantify the warming effects of various gases relative to CO ₂ emissions. A GWP greater than 1 indicates that a particular gas has a greater warming effect on Earth compared to CO ₂ during that specific timeframe (usually 100 years)
Greenhouse gases (GHGs)*	Atmospheric elements that absorb and release radiation at particular wavelengths within the range of terrestrial radiation emitted by the Earth's surface, the atmosphere, and clouds. This characteristic leads to the greenhouse effect. Key GHGs include water vapor, carbon dioxide, nitrous oxide, methane, and ozone
ISO 14040/14044 standards*	International Organization for Standardization (ISO) refers to a worldwide federation of national standards bodies. In this particular case, ISO 14040/14044 refers to international standards that cover life cycle assessment (LCA) studies
Landfill waste*	Landfill waste refers to solid waste materials such as nonrecyclable items (plastic bags, food waste, paper products, and other household waste) that are disposed of in specially designed areas called landfills. Also, in the present context, non-recyclable endoscopy supplies not contaminated with body fluids
LCA*	Life cycle assessment. Methodology that systematically evaluates the environmental factors and potential consequences of product systems through a “cradle-to-grave” or “cradle-to-cradle” analysis, spanning from obtaining raw materials to their ultimate disposal, according to specified objectives and boundaries
LCA goal and scope*	<i>First phase of an LCA:</i> Includes the specifying principles (functional unit and system boundaries), requirements and guidelines to assess the environmental impact of products, processes, and organizations
Life cycle inventory (LCI) analysis	<i>Second phase of an LCA:</i> Compilation and quantification of data inputs and outputs for a product or service throughout its life cycle, necessary to meet the goals of the defined study

Life cycle impact assessment (LCIA) phase*	<i>Third phase of an LCA:</i> Evaluation of the scale and importance of potential environmental impacts associated with a product system over its entire lifecycle. In this phase, LCI results are assigned to impact categories, with specific emissions and resource usages linked to broader environmental and human health impacts. These results provide insights into the environmental concerns linked with both the inputs and outputs of the product system
Life cycle interpretation*	Final phase of an LCA: Summary and discussion of LCI and/or LCIA results in relation to the defined goal and scope, in order to reach conclusions and recommendations
Life cycle model	Model to determine what life cycle stages (raw material extraction, also called 'cradle', manufacturing & processing, transportation, usage & retail, waste disposal, also called the 'grave') are covered in an LCA, structuring the process of data collection and analysis[8]
Cradle-to-gate	Model for assessment of the manufacturing process of a product, covering the product lifecycle from raw material extraction ("cradle") up to the product's departure from the manufacturing facility ("gate")[8]
Cradle-to-grave	Model for comprehensive assessment of the life cycle of a product, from raw material extraction ("cradle") up to its disposal ("grave")[8]
Material	A physical substance that objects (products) can be made from
Product	An article or substance that is manufactured or refined for sale. A product is made of one or more materials
Single-use product	Products that are used once, or for a short period of time before being discarded or recycled
Reusable product	Products that can be used multiple times for its intended purpose or a different purpose, rather than being discarded after a single use
Regulated medical waste*	Nonrecyclable items saturated with body fluids or containing infectious agents
Scopes 1, 2 and 3*	Scope 1: Direct emissions (e.g. fuel combustion for boilers or vehicles, CO ₂ insufflation) Scope 2: Indirect emissions associated with the purchase of electricity (e.g. for heating, ventilation, or cooling) Scope 3: Indirect emissions generated within the supply chain of endoscopic supplies (manufacturing, transportation, and disposal)
System boundary*	A defined set of criteria for selecting the unit processes that form a product system

323

* Definitions adopted from Cunha Neves et al (2025)[18].

324

325

326 Table 2 – Study characteristics, methods and outcomes

Study Characteristics			Study methods			Outcomes		
Author (year) [ref]	Country	Assessment period and number of procedures assessed	Assessment type	Setting	System boundaries	Environmental impact categories assessed	Reported GHG emissions (kg CO ₂ e)	Other reported measures
Cunha Neves et al. (2023) [22]	Portugal	October 2021 - March 2022; Pre-intervention (T0): 185 endoscopies, One month after intervention (T1): 178. Four months after intervention (T2): 172	Sustainability intervention study	Waste generated by GI endoscopy during 4 weeks	Included: landfill waste, Regulated Medical waste, Recycled plastic, Recycled paper Excluded: sharps waste, pre- and post-interventional waste, waste due to endoscope reprocessing	GHG emissions; Waste generation (kg)	RMW: T0: 362.1 (82.5%), T1: 212.1 (70.7%), T2: 204 (70.1%) Total carbon footprint: T0: 438.7, T1: 299.9, T2: 286.6	Landfill waste: T0: 76.6kg (38.8%), T1: 87.8kg (51.2%), T2: 82.6kg (50.9%) RMW : T0: 120.7kg (61.2%), T1: 70.7kg (41.2%), T2: 68kg (41.9%). Recycled paper: T0: 0kg (0%), T1: 4.7kg (2.8%), T2: 3.8kg (2.3%). Recycled plastic: T0: 0kg (0%), T1: 8.2kg (4.8%), T2: 8kg (4.9%). Total waste: T0: 197.3kg, T1: 171.4kg, T2: 162.4kg
De Jong et al. (2023) [23]	the Netherlands	February 2020; 15 procedures + February 2021: 21 procedures	Sustainability intervention study	Waste generated per endoscopy procedure	GI endoscopy unit with 10,000 procedures per year	GHG emissions; Waste generation (kg)	Baseline measurement (T0): 4.69 per procedure After recycling (T1): 4.55 per procedure	T0: total: 0.97 kg, 85% residual waste, 9.6% recyclable plastic waste. T1: 0.89 kg, 8.9% recyclable plastic waste
Desai et al. (2024) [24]	USA	May-June 2022; 450 EGDs/Colonoscopies in 400 patients	Prospective study	Waste generation and energy use for 100 procedures	Included: total waste (Landfill, biohazard, potentially recyclable, sharps) of all devices, PPE, packaging and tubing. Liquid waste generated from endoscope reprocessing. Energy use of endoscopy unit and endoscopy tower, electrocautery machine, monitors	GHG emissions; Water use; Waste generation (kg); Energy consumption (kWh)	Total emissions: 1,501 Landfill waste: 766.5 Energy consumption: 734.58	For 100 procedures: Waste: 303kg, direct landfill waste: 219kg, biohazard: 72.8kg, sharps: 11.1kg, recyclable items: 61kg Endoscope reprocessing: 5,243 liters of water Energy consumption: 1,980kWh
Elli et al. (2024) [25]	Italy	Unknown	Retrospective study	One upper or lower GI endoscopy procedure	Included: energy use (including energy required to operate endoscopes, climate, lighting of the endoscopic room, use of computers), Endoscope reprocessing, use of PPE, single use devices and products, vascular access, paper to print report and pictures, histology processing. Excluded: Energy consumption during manufacture and transportation of materials	GHG emissions, energy consumption (kWh)	EGD: 5.43 Colonoscopy: 6.71	Energy consumption EGD: 5.5kWh per procedure Colonoscopy: 11.0kWh per procedure
Fichtl et al. (2024) [26]	Germany	Baseline (T0): 30 days + Power saving phase (T1): 30 days	Sustainability intervention study	Energy use per procedure	Included: energy consumption of endoscopy tower	GHG emissions; Energy consumption (kWh)	Center 1: T0: 0.06925, T1: 0.0744, center 2: T0: 0.15928, T1: 0.14428, center 3: T0: 0.15357, T2: 0.14212	Mean power consumption per examination: center 1: T1: 159.56Wh (± 23.91), T1: 132.36Wh (± 20.51), center 2: T0: 367.01Wh (± 40.65), T1: 332.44Wh (± 62.6), center 3: T0: 353.84Wh (± 93.66), T2: 327.46Wh (± 74.51)
Gayam (2020) [27]	USA	Unknown	Retrospective study	Energy consumption in a single day	Included: energy consumption of wash machines, endoscopy machines, anesthesia machines, room lighting	GHG emissions; Waste generation (kg); Energy consumption (kWh)	Energy use per year: 15,780	Waste: 1.5 kg of plastic waste (landfill), 0.3 kg recyclable Energy use per day: Wash machines: 24.67 kWh, endoscopy machines: 27.00 kWh, anesthesia machine: 12.00 kWh, room lighting: 47.88 kWh, total: 111.55

							kWh Energy use per year: 29,003 kWh
Gordon et al (2021) [28] USA	Unknown	Process-based LCA	The processing of one person's biopsy sample	Included: All biopsy materials and supplies used within the laboratory space, associated electricity used, upstream production and downstream treatment or disposal of resources, transportation of staff. Excluded: Manufacturing of capital equipment and buildings, non-electricity energy demand.	GHG emissions	1 specimen jar with biopsies: 0.29, 3 specimen jars with biopsies: 0.79.	N/a
Grau et al (2025) [29] France	Sep 2019 - Feb 2021, 182 P-EMR, 177 ESD, simulated follow-up period of 18 months	LCA	P-EMR and ESD procedures	Included: Medical devices, bowel preparation, drugs for anesthesia (only packaging), electricity consumption, patient transport Excluded: staff travel, the impact of outpatient clinics, overnight stay in hospital, meals, endoscopes	GHG emissions; Waste generation (kg); energy consumption (kWh)	P-EMR: 63.5 (equipment 10.5, patient transport 32.7, electricity 8.0, anesthesia 12.3), 31.3 excluding transport ESD: 73.2 (equipment 13.3, transportation 33.4, electricity 12.5, anesthesia 12.9), 39.3 without transportation Follow-up colonoscopy at local center: 16.5, follow-up at expert center: 43	Waste per procedure: 1.7 kg for P-EMR, 2.3 kg for ESD Waste for one standard simulated follow-up colonoscopy: 0.6 kg
Henniger et al. (2023) [30] Germany	1 February 2022 - 1 May 2022 and 1 February 2023 - 1 May 2023 (intervention period); 1,738 + 1,666 endoscopies	Sustainability intervention study	Waste generated per day	Included: consumables (transportation, production, waste burning), waste, energy related emissions	GHG emissions; Waste generation (kg)	Control: 8,010, Intervention: 7,090	Total waste: control: 70.84kg/day, intervention: 69.88kg/day
Henniger et al. (2023) [31] Germany	1 January 2022 to 31 December 2022; middle-sized GI endoscopy unit (8,000-8,500 procedures)	Retrospective study	All procedures in a GI endoscopy unit for one year	Included: electrical power and gas used for heating, waste treatment, endoscopic devices and protective materials (manufacturing, packaging, transportation: cradle to gate) Excluded: staff travel needs, capital goods	GHG emissions; Waste generation (kg); Energy consumption (kWh)	Total emissions: 62,720 per year. Scope 1: consumption of natural gas: 35,910 Scope 3: 26,810, 14,150 materials, 8,470 extraction, processing and transport of natural gas and electricity, 890 packaging, 2,750 transportation, 550 handling waste	Scope 2 (Electricity): 46,622kWh (from regenerative sources, so CO2e = 0kg)
Jalayeri Nia et al (2024) [32] UK	December 2022 - September 2023; 25 patients	Prospective study	Colorectal cancer screening via conventional colonoscopy (P1), home-delivered CCE (P2), or clinical CCE (P3)	P1: patient travel, energy usage and waste disposal, polyp removal, IM morphine used as proxy for sedation and analgesia medicines P2: patient travel P3: courier service delivering and collecting the smartbox, staff travel Excluded: Colonoscopy capsules, 5G hardware and smartbox manufacture, bowel preparation	GHG emissions	P1: Base case (BC): travel 6.62, Procedure 5.46, Pharma 0.02, total 12.10 Optimised case(OC): Travel 2.52, Procedure 3.06, Pharma 0.02, Total 5.60 P2: BC: travel 17.09, Procedure 3.87, Pharma 0.01, total 20.98 OC: Travel 7.99, Procedure 1.56, Pharma 0.01, Total 9.57 P3: BC: travel 12.67, Procedure 3.87, Pharma 0.01, total 16.56 OC: Travel 1.36, Procedure 1.56,	N/a

							Pharma 0.01, Total 2.94	
Jung et al (2025) [33] South Korea	October 2023, 3,922 endoscopies in 7 hospitals	Prospective study	Waste of GI endoscopy procedures in South Korea	Excluded: Specific therapeutic interventions, such as endoscopic resection and stent insertion	Waste generation (kg)	N/a	Total waste: 4,558 kg Mean weight per procedure: 1.34kg Disposable weight per EGD: 0.24 kg (0.05-0.35 kg) Disposable waste per colonoscopy: 0.43 kg (0.12-0.61 kg)	
Klose et al (2024) [34] Germany	January to June 2023; 300 procedures in 260 patients	Survey	One outpatient endoscopy procedure	Included: travel for pre-endoscopic consultation and the endoscopic procedure	GHG emissions	Patients: 10.7 Staff: 0.8	N/a	
Kojima et al (2008) [35] Japan	November 2004 - November 2005; 220 panendoscopies, 87 colonoscopies	Sustainability intervention study	n/a	Included waste categories: sharp infectious waste, needle, infectious waste, non-infectious waste, non-infectious plastic waste	Waste generation (kg)	N/a	Before HACCP implementation: Sharp infectious waste: 6.6kg (7.1%), Infectious waste: 86.6kg (92.9%), Total: 93.2kg After HACCP implementation: Sharp infectious waste: 6.4kg (6.8%), Needle: 0.2%, Infectious waste: 64.2kg (68.9%), Non-infectious waste: 17.7kg (19.0%), Non-infectious plastic waste: 4.611kg (4.9%), Total: 93.2kg	
Lacroute et al (2023) [36] France	January 2021 to December 2021; 8524 procedures for 6070 patients	Retrospective study	One endoscopy procedure	Included: Energy use, medical gases, medical and non-medical equipment, consumables including, food products, laundry services and cleaning, patient and staff travel, waste Excluded: manufacturing of products not in database, transportation of products from outside Europe	GHG emissions; Waste generation (kg); Energy consumption (kWh)	Total emissions: 241,400 (+/- 56,000). Per procedure: 28.4 Travel: 110,014 (45%), medical and non-medical equipment: 77,556 (32%), energy: 28,937 (12%), electricity: 3,000, Consumables: 17,339 (7%), Waste: 6,639 (3%), Freight: 619t (0.4%), Medical gases: 1.1 (0.005%)	Electricity: 57,840 kWh Waste: 1.5kg per procedure	
Lämmä et al (2025) [37] the Netherlands	July 17-27, 2023; 13 colonoscopies	Process-based LCA	Diagnostic colonoscopy procedures	Included: Extraction of raw materials, production, transport, use phase, waste processing, reprocessing, energy and water use. Excluded: Hospital infrastructure and medical gas infrastructure	GHG emissions; Waste generation (kg); Energy consumption (kWh); raw material extraction; water use; human carcinogenic toxicity, human health	56.4 per colonoscopy Excluding transport: 14.2 per colonoscopy	Human health damage: 11.3·10 ⁻⁵ DALYs per colonoscopy, 137 L water consumed Transportation of patients/staff: 76.5% of total, disposables: 13.5%	
Le et al (2022) [38] USA	Unknown	Process-based LCA	One ERCP using one of three duodenoscopes: conventional RD, RD with disposable endocaps, SD	included: manufacturing, transportation and packaging, disposal, cleaning, infection treatment, and electricity during use Excluded: recycling of SD's	GHG emissions; Acidification; Eutrophication; Resource depletion; Ionizing radiation; Ozone depletion; Water use; Ecotoxicity; Land use; Waste generation (kg); Human health	Performing an ERCP with an SD: 36.3 - 71.5 (91-96% manufacturing, 3-5% disposal) RD: 1.53 (electricity use 62%, cleaning and disinfection 26%) RD with disposable endcap: 1.54	Human health (DALY): DALY for RD: 2.31E-04, RD with disposable endcap : 1.15E-04 Other outcomes (end-point): RD: Human health DALY (DALY): 1.31E-05, Ecosystem quality species per year (EQSy): 6.22E-08, Resource consumption USD2013 (RCusd): 8.50E-02 RD with disposable endcaps: DALY: 1.29E-05, EQSy: 6.12E-08, RCusd: 8.53E-02 SD (lower bound): DALY: 1.70E-04, EQSy: 2.58E-07, RCusd: 2.24E+00	

							SD (upper bound): DALY: 3.42E-04, EQS _y : 4.67E-07, RC _{USD} : 4.28E+00
López-Muñoz et al (2024) [40] Spain	16,000 RD, 1,600 SD procedures and a combination of 1,405 uses of an RD plus 195 procedures using SDs	Process-based LCA	One ERCP procedure	Excluded: electricity consumption during ERCP, medical and non-medical equipment, other consumables, general waste, travel	GHG emissions; Acidification; Ionizing radiation; Water use; Resource depletion	Emissions per one endoscopy: RD: 0.1, SD-A: 7.9, SD-B: 6.6 Emissions for one endoscopy when endoscope is used 1,600x: RD: 152 SD-A: 12,640, SD-B: 10,512 Reusable + single use A (1,405x RD plus 195x SDs): 1,677 Reusable and single use B (1,405x RD plus 195x SDs): 1,417	RD: Acidification (Ac): 0.16 mol H ⁺ eq, Water use (WU): 7.17m ³ , Resource use (RU): 0.00116kg Sb-eq, Ionizing radiation (IR): 0.95kg 235U-eq SD-A: Ac: 0.02 mol H ⁺ eq, WU: 1.31m ³ , RU: 0.00012kg Sb-eq, IR: 0.15kg 235U-eq SD-B: Ac: 0.011mol H ⁺ eq, WU: 0.91m ³ , RU: 0.00012kg Sb-eq, IR: 0.15kg 235U-eq
López-Muñoz et al (2023) [39] Spain	June 2022 to July 2022; 143 devices: 75 biopsy forceps, 49 polypectomy snares and 19 haemostatic clips, to assess the efficacy of a "green mark"	Process-based LCA + one-week prospective sustainability intervention study	Devices from four manufacturers (A, B, C and D): biopsy forceps (A, B and C), polypectomy snares (A, B and D), haemostatic clips (A and B)	Included: Extraction of material and energy resources, manufacturing, transport of production process and disposal, weight and composition of endoscopy devices Excluded: manufacturing and assembly steps (injection, extrusion and lamination) were not included (around 15% of total)	GHG emissions	Haemostatic clips: 0.49 (range 0.41-0.57) Snares: 0.41 (range 0.38-0.44) Forceps: 0.41 (range 0.31-0.47) Total: 67.74 After intervention: -18.26 (-27.44%)	N/a
Lotter et al (2025) [41] Australia	77,342 sterile water bottles	Process-based LCA	Sterile water bottles used for colonoscopy	Included: sterile water bottles manufacturing, transport and disposal Excluded: transport of waste, oil used to produce bottles, transport of bottles in the region	GHG emissions	Total 77,342 bottles: landfill 15,247, recycling 23,035, incineration 31,330 Per bottle: landfill 0.197, recycling 0.298, incineration 0.405	N/a
Martin-Cabazuelo et al (2024) [42] Spain		Process-based LCA	Snares (S1-3), hemoclips (H1, H2), biopsy forceps (F1-3)	Included: production, assembly, transportation, waste management Excluded: sterilization, user manuals	GHG emissions	S1 0.72, S3 0.52 F1 0.69, F3 0.48 H1 0.54, H2 0.80	N/a
Namburur et al (2022) [43] USA	5-day audit in January and February 2020; 278 endoscopies for 243 patients	Retrospective study	One endoscopy procedure	Included: pre- and post-procedure care Excluded: waste from patient waiting areas, staff break rooms and sharps waste	Waste generation (kg)	N/a	Total: All: 619kg, low volume centre (LVC): 73kg, high volume centre (HVC): 546kg Per endoscopy: All: 2.11kg, LVC: 1.96kg, HVC: 2.27kg Landfill: All: 1.34kg (64%), LVC: 1.33kg (68%), HVC: 1.36kg (60%) Biohazard: All: 0.59kg (28%), LVC: 0.64kg (32%), HVC: 0.54 kg (24%) Recycled: All: 0.18kg (9%), LVC --> 0kg (0%), HVC: 36kg (16%) Reprocessing: All: 0.30kg, LVC: N/A, HVC 0.33kg
Pioche et al (2023) [44] France	November 2022 - February 2024; 100 patients, Three devices: PillCam (PC), CapsoCam (CC), NaviCam (NC)	Process-based LCA; survey	One small bowel capsule endoscopy procedure	Included: materials, packaging manufacturing, transport, use, disposal, bowel preparation, patient and staff transport, data storage, capsule retrieval Excluded: water to flush toilet, capsule journey	GHG emissions	PC: 19.4, CC: 20.6, NC: 19.5 Including consultations: PC: 27.2 CC: 28.4, NC: 27.3 All packaging components recycled: PC: -0.09, NC: -0.13, NC: -0.06	N/a
Pioche et al	April 2023 to February	Hybrid LCA	The provision of	Included: Manufacture, distribution, usage,	GHG emissions;	SG: total: 10.9, component	SG: depletion fossil resources (DFR): 130

(2024) [45] France	2024		an endoscope for one upper GI endoscopy	reprocessing and disposal of endoscope Excluded: pre- and post-care, patient and staff travel, sedation, bite block, lighting and energy, additional devices (e.g. forceps)	Acidification; Eutrophication; Resource depletion; Water use; Ecotoxicity	production: 5.7, assembly and sterilization: 1.4, supply manufacturer: 0.2 Supply distributor: 0.1 packaging: 1.5, end of life treatment: 2.1 RG: total: 4.7, endoscope production and assembly: 0.02, primary packaging: 0.4, supply: 0.05, decontamination: 2.1, sent for repair: 0.06, sampling: 0.01, end of life treatment: 2.1	MJ, freshwater ecotoxicity (FE): 15.9 kg 1,4-DB _e , terrestrial acidification (TA): 0.12 kg SO ₂ e, eutrophication (Eu): 0.02 kg PO ₄ ³⁻ e, water consumption (WC): 6.2 M ³ RG: total: DFR: 60.9, FE: 2.6, TA: 0.02, Eu: 0.005, WC: 9.5
Ribeiro et al (2024) [46] Portugal	14-18 February 2022	Prospective study	Waste generated during one endoscopy procedure	Included: the mass of waste from pre and postprocedural areas, endoscopy rooms, as well as the reprocessing area + the amount of water used during the reprocessing of a single endoscope	Water use; Waste generation (kg)	n/a	Total waste = 443.2 kg Endoscopy rooms: 310.8 kg (70%), pre- and postprocedural area: 55.2 kg (13%), reprocessing: 77.2 kg (17%) Waste per procedure: 1.8 kg, of which 1.4kg hazardous (group III) Water consumption: 250 ml for precleaning, 30L for manual cleaning and rinsing (15L for each), 25L high-level disinfection Total (241 procedures): 13,315.3L of water (55.3L per endoscope)
Rughwani et al (2025) [47] India	29 May to 10 June 2023, 3873 procedures in 3244 patients	Prospective study	GI Endoscopy department	Included: Electricity use, water use (reprocessing and laundry), waste, patient travel, medical gas, transport of endoscopes and devices, detergents and disinfectants, laundry Excluded: manufacturing of consumables, endoscopes and medical gases	GHG emissions; Waste generation (kg); Electricity (kWh), water use	Total emissions: 148947.32 or 38.45 per procedure. Patient travel 83.09%, electricity consumption 10.42%, medical gas transport and usage 3.63%, water consumption 1.86%	Waste: total 1,952.50 kg, per procedure 0.504 kg Electricity: total 19,160.4 kWh, per procedure 4.94 kWh Water use: 67.85l per procedure
Vaccari et al (2018) [48] Italy	2013 and 2014 (2 years)	Retrospective study	Hospital waste	Included: non-hazardous healthcare waste including unsorted municipal waste, organic waste and paper/cardboard	Waste generation (kg)	n/a	Total: 0.50kg/procedure Hazardous waste: 3.09kg/day/bed
Zullo et al (2023) [49] Italy	2000 hypothetical upper endoscopy procedures	Retrospective study	Upper GI biopsy sampling for one patient	Included: bottles for calibration plus a liquid-draining system, cardboard box for the 3 bottles, washing solution tank, gastric juice suction tube, histology assessment, biopsy forceps, biopsy jar Excluded: calibration liquids and reagents	GHG emissions	Standard biopsy sampling: 1262 per year. EndoFaster: 704 per year	N/a

Please refer to main text for details on references.

327
328 CCE, colon capsule endoscopy; CO₂e, carbon dioxide equivalent; DALY, disability-adjusted life years; EGD, esophagogastrroduodenoscopy; ERCP, endoscopic retrograde
329 cholangiopancreatography; ESD, endoscopic submucosal dissection; GHG, greenhouse gas; GI, gastrointestinal; HACCP, hazard analysis and critical control points; IM, intramuscular;
330 kg, kilogram; kWh, kilowatt-hour; L, liter; LCA, life cycle assessment; M, meter; MJ, megajoule; n/a, not applicable; P-EMR: piecemeal endoscopic mucosal resection; PO₄³⁻e, phosphate;
331 PPE, personal protective equipment; RD, reusable duodenoscope; RG, reusable gastroscope; RMW, regulated medical waste; SD, single-use duodenoscope; SG, single-use gastroscope;
332 SO₂e, sulfur dioxide; USA, United States of America; USD, United States dollars; UK, United Kingdom.

333 **REFERENCES**

334 1. Karlner J, Slotterback S, Boyd R et al. Health care's climate footprint: the
335 health sector contribution and opportunities for action. European Journal of
336 Public Health 2020; 30: ckaa165.843. DOI: 10.1093/eurpub/ckaa165.843

337 2. Baddeley R, Aabakken L, Veitch A, Hayee BH. Green Endoscopy: Counting
338 the Carbon Cost of Our Practice. Gastroenterology 2022; 162: 1556-1560.
339 DOI: 10.1053/j.gastro.2022.01.057

340 3. Siau K, Hayee BH, Gayam S. Endoscopy's Current Carbon Footprint.
341 Techniques and Innovations in Gastrointestinal Endoscopy 2021; 23: 344-
342 352. DOI: 10.1016/j.tige.2021.06.005

343 4. Booth A. Carbon footprint modelling of national health systems:
344 Opportunities, challenges and recommendations. Int J Health Plann Manage
345 2022; 37: 1885-1893.

346 5. Wiedmann T, Minx J. A definition of 'carbon footprint'. Ecological economics
347 research trends 2008; 1: 1-11.

348 6. Greenhouse Gas Protocol. Greenhouse gas protocol. Sector Toolsets for Iron
349 and Steel-Guidance Document 2011; 1-12.

350 7. Salas RN, Maibach E, Pencheon D et al. A pathway to net zero emissions for
351 healthcare. Bmj 2020; 371.

352 8. Finkbeiner M, Inaba A, Tan R et al. The New International Standards for Life
353 Cycle Assessment: ISO 14040 and ISO 14044. The International Journal of Life
354 Cycle Assessment 2006; 11: 80-85. DOI: 10.1065/lca2006.02.002

355 9. Sinkevicius V. Commission recommendation on the use of the
356 Environmental Footprint methods to measure and communicate the life cycle
357 environmental performance of products and organisations. C(2021) 9332
358 final. - Annex I, Chapter 3.2.3 environmental Footprint Impact
359 Categories Official Journal of the European Union 2021; 471/204.

360 10. Rodríguez De Santiago E, Dinis-Ribeiro M, Pohl H et al. Reducing the
361 environmental footprint of gastrointestinal endoscopy: European Society of
362 Gastrointestinal Endoscopy (ESGE) and European Society of
363 Gastroenterology and Endoscopy Nurses and Associates (ESGENA) Position
364 Statement. Endoscopy 2022; 54: 797-826. DOI: 10.1055/a-1859-3726

365 11. Maida M, Vitello A, Shahini E et al. Green endoscopy, one step toward a
366 sustainable future: Literature review. Endosc Int Open 2024; 12: E968-E980.
367 DOI: 10.1055/a-2303-8621

368 12. Park SB, Cha JM. Gastrointestinal endoscopy's carbon footprint. Clinical
369 Endoscopy 2023; 56: 263-267. DOI: 10.5946/ce.2023.003

370 13. Perisetti A, Desai M, Bourke MJ et al. Production and possible reduction of
371 greenhouse gases produced during GI endoscopy activity: A systematic
372 review of available literature. Gut 2023; 72: 493-500. DOI:
373 10.1136/gutjnl-2022-328369

374 14. Pohl H, Baddeley R, Hayee B. Carbon footprint of gastroenterology practice.
375 Gut 2023; 72: 2210-2213. DOI: 10.1136/gutjnl-2023-331230

376 15. Sonaiva S, Marino R, Agollari K et al. Environmentally sustainable
377 gastroenterology practice: Review of current state and future goals.
378 Digestive Endoscopy 2024; 36: 406-420. DOI: 10.1111/den.14688

379 16. Page MJ, McKenzie JE, Bossuyt PM et al. The PRISMA 2020 statement: an
380 updated guideline for reporting systematic reviews. *bmj* 2021; 372.

381 17. Konno KL, B.; Pullin, A.S. Collaboration for Environmental Evidence Critical
382 Appraisal Tool version 0.3. In: 2021: DOI: DO

383 18. Cunha Neves JA, Baddeley R, Pohl H et al. Endoscopic Sustainability
384 PrimAry Reporting Essentials (E-SPARE): European Society of
385 Gastrointestinal Endoscopy (ESGE) Position Statement. *Endoscopy* 2025.

386 19. Drew J, Christie SD, Tyedmers P et al. Operating in a climate crisis: a state-
387 of-the-science review of life cycle assessment within surgical and anesthetic
388 care. *Environmental health perspectives* 2021; 129: 076001.

389 20. Kouwenberg LHJA, Cohen ES, Hehenkamp WJK et al. The carbon footprint of
390 hospital services and care pathways: a state-of-the-science review.
391 *Environmental health perspectives* 2024; 132: 126002.

392 21. Weidema BP. Guidelines for critical review of product LCA. SPOLD, Brussels
393 1997; 14.

394 22. Cunha Neves JA, Roseira J, Queirós P et al. Targeted intervention to achieve
395 waste reduction in gastrointestinal endoscopy. *Gut* 2023; 72: 306-313. DOI:
396 10.1136/gutjnl-2022-327005

397 23. de Jong D, Volkers A, de Ridder E et al. Steps Toward a Greener Endoscopy
398 Unit. *Clinical Gastroenterology and Hepatology* 2023; 21: 2723-2726.e2722.
399 DOI: 10.1016/j.cgh.2023.06.007

400 24. Desai M, Campbell C, Perisetti A et al. The Environmental Impact of
401 Gastrointestinal Procedures: A Prospective Study of Waste Generation,
402 Energy Consumption, and Auditing in an Endoscopy Unit. *Gastroenterology*
403 2024; 166: 496-502.e493. DOI: 10.1053/j.gastro.2023.12.006

404 25. Elli L, La Mura S, Rimondi A et al. The carbon cost of inappropriate
405 endoscopy. *Gastrointestinal Endoscopy* 2024; 99: 137-145.e133. DOI:
406 10.1016/j.gie.2023.08.018

407 26. Fichtl A, Tacheva V, Sturm N et al. Impact of power consumption and power
408 saving for GI endoscopy (power on study) on reducing CO₂ emissions. *Gut*
409 2024; 73: 892-896. DOI: 10.1136/gutjnl-2023-331867

410 27. Gayam S. Environmental Impact of Endoscopy: "scope" of the Problem.
411 *American Journal of Gastroenterology* 2020; 115: 1931-1932. DOI:
412 10.14309/ajg.0000000000001005

413 28. Gordon IO, Sherman JD, Leapman M et al. Life Cycle Greenhouse Gas
414 Emissions of Gastrointestinal Biopsies in a Surgical Pathology Laboratory. *Am
415 J Clin Pathol* 2021; 156: 540-549. DOI: 6210450 [pii]
416 10.1093/ajcp/aqab021

417 29. Grau R, Cottinet PJ, Le MQ et al. Endoscopic En Bloc Vs Piecemeal Resection
418 of Large Colonic Adenomas: Carbon Footprint Post Hoc Analysis of a
419 Randomized Trial. *Clin Gastroenterol Hepatol* 2025.

420 30. Henniger D, Lux T, Windsheimer M et al. Reducing scope 3 carbon emissions
421 in gastrointestinal endoscopy: results of the prospective study of the 'Green
422 Endoscopy Project Würzburg'. *Gut* 2023; 73: 442-447. DOI:
423 10.1136/gutjnl-2023-331024

424 31. Henniger D, Windsheimer M, Beck H et al. Assessment of the yearly carbon
425 emission of a gastrointestinal endoscopy unit. *Gut* 2023. DOI:
426 10.1136/gutjnl-2023-329940

427 32. Jalayeri Nia G, Conway C, Ward F et al. Exploring the feasibility of home-
428 delivered capsule endoscopy with 5G support: innovations and carbon
429 footprint insights. 2024. DOI: 10.1136/bmjgast-2024-001500

430 33. Jung DH, Lee HJ, Jeon TJ et al. Measuring Medical Waste from Gastrointestinal
431 Endoscopies in South Korea to Estimate Their Carbon Footprint. *Gut Liver*
432 2025; 19: 43-49.

433 34. Klose MA, Becker A, Blank V et al. Role of patient and staff mobility in scope
434 3 emissions in GI endoscopy. *Gut* 2024; 73: 1232-1234. DOI:
435 10.1136/gutjnl-2024-332041

436 35. Kojima S, Kato M, Wang DH et al. Implementation of HACCP in the risk
437 management of medical waste generated from endoscopy. *Journal of Risk*
438 *Research* 2008; 11: 925-936. DOI: 10.1080/13669870802180613

439 36. Lacroute J, Marcantoni J, Petitot S et al. The carbon footprint of ambulatory
440 gastrointestinal endoscopy. *Endoscopy* 2022; 55: 918-926. DOI:
441 10.1055/a-2088-4062

442 37. Lämmer P, Oomkens D, Stobernack T, Duijvestein M. Environmental
443 footprint of a colonoscopy procedure: Life cycle assessment. *Endosc Int Open*
444 2025; 13: a25706599.

445 38. Le NNT, Hernandez LV, Vakil N et al. Environmental and health outcomes of
446 single-use versus reusable duodenoscopes. *Gastrointestinal Endoscopy*
447 2022; 96: 1002-1008. DOI: 10.1016/j.gie.2022.06.014

448 39. Lopez-Muñoz P, Martín-Cabezuelo R, Lorenzo-Zúñiga V et al.
449 ENVIRONMENTAL FOOTPRINT AND MATERIAL COMPOSITION COMPARISON
450 OF SINGLE-USE AND REUSABLE DUODENOSCOPES. *Endoscopy* 2024. DOI:
451 10.1055/a-2364-1654

452 40. López-Muñoz P, Martín-Cabezuelo R, Lorenzo-Zúñiga V et al. Life cycle
453 assessment of routinely used endoscopic instruments and simple
454 intervention to reduce our environmental impact. *Gut* 2023; 72: 1692-1697.
455 DOI: 10.1136/gutjnl-2023-329544

456 41. Lotter JA, Zhao KR, Rouse M et al. "Scoping" sustainability: rethinking sterile
457 water use in colonoscopies. *ANZ J Surg* 2025; 95: 632-634.

458 42. Martin-Cabezuelo R, Vilarino-Feltrer G, Campillo-Fernandez AJ et al.
459 Materials Science Toolkit for Carbon Footprint Assessment: A Case Study for
460 Endoscopic Accessories of Common Use. *ACS Environ Au* 2024; 4: 42-50. DOI:
461 10.1021/acsenvironau.3c00044

462 43. Namburar S, von Renteln D, Damianos J et al. Estimating the environmental
463 impact of disposable endoscopic equipment and endoscopes. *Gut* 2022; 71:
464 1326-1331. DOI: 10.1136/gutjnl-2021-324729

465 44. Pioche M, Cunha Neves JA, Pohl H et al. Environmental impact of small-
466 bowel capsule endoscopy. *Endoscopy* 2023. DOI: 10.1055/a-2313-5142

467 45. Pioche M, Pohl H, Cunha Neves JA et al. Environmental impact of single-use
468 versus reusable gastrosopes. *Gut* 2024; 73: 1816-1822. DOI:
469 10.1136/gutjnl-2024-332293

470 46. Ribeiro T, Morais R, Monteiro C et al. Estimating the environmental impact
471 of endoscopic activity at a tertiary center: a pilot study. European Journal of
472 Gastroenterology and Hepatology 2024; 36: 39-44. DOI:
473 10.1097/meg.0000000000002667

474 47. Rughwani H, Kalapala R, Katrevula A et al. Carbon footprinting and
475 environmental impact of gastrointestinal endoscopy procedures at a tertiary
476 care institution: a prospective multi-dimensional assessment. Gut 2025.

477 48. Vaccari M, Tudor T, Perteghella A. Costs associated with the management
478 of waste from healthcare facilities: An analysis at national and site level.
479 Waste Management and Research 2018; 36: 39-47. DOI:
480 10.1177/0734242x17739968

481 49. Zullo A, Chiovelli F, Esposito E et al. Can Gastric Juice Analysis with
482 EndoFaster R Reduce the Environmental Impact of Upper Endoscopy? 2023.
483 DOI: 10.3390/healthcare11243186

484 50. Nkurunziza JMV, Udahemuka JC, Dusenge JB, Umutesi F. Overview of
485 trending medical technologies. GlobalCE 2022; 4: 16-46.

486 51. EPA. Greenhouse Gas Equivalencies Calculator. In: Environmental
487 Protection Agency; 2024: DOI: DO

488 52. Eussen MMM, Moosdorff M, Wellens LM et al. Beyond single-use: a
489 systematic review of environmental, economic, and clinical impacts of
490 endoscopic surgical instrumentation. International Journal of Surgery 2024;
491 110: 8136-8150.

492 53. Nabi Z, Tang RSY, Sundaram S et al. Single-use accessories and endoscopes
493 in the era of sustainability and climate change—A balancing act. Journal of
494 gastroenterology and hepatology 2024; 39: 7-17.

495 54. Gaetani M, Uleryk E, Halgren C, Maratta C. The carbon footprint of critical
496 care: a systematic review. Intensive care medicine 2024; 50: 731-745.

497 55. Rizan C, Steinbach I, Nicholson R et al. The carbon footprint of surgical
498 operations: a systematic review. Annals of surgery 2020; 272: 986-995.

499 56. Matuštík J, Kočí V. What is a footprint? A conceptual analysis of
500 environmental footprint indicators. Journal of Cleaner Production 2021; 285:
501 124833. DOI: <https://doi.org/10.1016/j.jclepro.2020.124833>

504 **TABLE/FIGURE LEGEND**

Table/figure	Title	Caption
Table 1	Glossary of terminology used in this systematic review	* Definitions adopted from Cunha Neves et al (2025)[18].
Table 2	Study characteristics, methods and outcomes	Please refer to main text for details on references. CCE, colon capsule endoscopy; CO ₂ e, carbon dioxide equivalent; DALY, disability-adjusted life years; EGD, esophagogastroduodenoscopy; ERCP, endoscopic retrograde cholangiopancreatography; ESD, endoscopic submucosal dissection; GHG, greenhouse gas; GI, gastrointestinal; HACCP, hazard analysis and critical control points; IM, intramuscular; kg, kilogram; kWh, kilowatt-hour; L, liter; LCA, life cycle assessment; M, meter; MJ, megajoule; n/a, not applicable; P-EMR: piecemeal endoscopic mucosal resection; PO ₄ ³⁻ e, phosphate; PPE, personal protective equipment; RD, reusable duodenoscope; RG, reusable gastroscope; RMW, regulated medical waste; SD, single-use duodenoscope; SG, single-use gastroscope; SO ₂ e, sulfur dioxide; USA, United States of America; USD, United States dollars; UK, United Kingdom.
Figure 1	Environmental impact categories assessed in included studies	Presented as percentages of total included studies (n=28)
Figure 2	Distribution of included studies across GHG protocol scopes	Studies across GHG Protocol scopes 1-3 in GI endoscopy, mapped by procedural stage and departmental level. GI, gastrointestinal; GHG, greenhouse gas; n, number; nd, no data.
Figure 3	Types of waste and their percentage per waste category	Categorized using the World Health Organization (WHO) standard healthcare waste categories, excluding pathological, chemical and pharmaceutical waste, as no study examined these categories.

505

Table S1 – Search Strategy

Database searched	Platform	Years of coverage	Search strategy
Medline ALL	Ovid	1946 - Present	(Endoscopy / OR Endoscopes / OR exp Endoscopy, Digestive System / OR (endoscop* OR colonoscop* OR gastroscop* OR esophagoscop* OR esophagastroduodenoscop* OR gastroduodenoscop* OR esophagastroskop* OR eosophagoscop* OR duodenoscop* OR sigmoidoscop*).ab,ti,kw.) AND (* Environment OR Medical Waste Disposal / OR Climate Change/ OR Carbon Footprint/ OR Particulate Matter/ OR Radiation, Ionizing/ OR Ocean Acidification/ OR Eutrophication/ OR Fossil Fuels/ OR ((environment* OR carbon OR co2 OR co-2 OR climate*) ADJ3 (impact* OR sustain* OR footprint* OR emission* OR reduct* OR cost OR pollut*)) OR (greenhouse ADJ (effect* OR gas*)) OR waterlog* OR water-log* OR ((climat* OR global) ADJ (warming OR change OR action*)) OR (waste* ADJ3 (disposal*)) OR green*-endoscop* OR (ozone* ADJ3 (deplet* OR formation*)) OR (human ADJ3 toxicit*) OR particulate-matter* OR PM10 OR PM2-5 OR PM-10 OR PM-2-5 OR ((ionizing OR ionising) ADJ3 radiat*) OR acidificat* OR eutrophicat* OR ecotoxic* OR ecologic*-toxic* OR land-use OR land-transformation* OR (water ADJ3 (footprint* OR consumption* OR deprevat*)) OR water-use OR resource-use OR (resource* ADJ3 depletion*) OR fossil-fuel* OR soil-qualit*).ab,ti,kw. OR (sustainab* OR footprint* OR foot-print* OR environmental* OR climate* OR (green* ADJ2 endoscop*) OR ozone* OR greenhouse OR pollut*).ti.) NOT (* Indocyanine Green / OR (greenlight* OR green-light* OR indocyanine-green*).ti.) NOT (exp animals/ NOT humans/) AND english.la
Embase	Embase.com	1971 - Present	(endoscopy/de OR endoscope/de OR 'digestive endoscope'/exp OR 'digestive tract endoscopy'/exp OR (endoscop* OR colonoscop* OR gastroscop* OR esophagoscop* OR esophagastroduodenoscop* OR gastroduodenoscop* OR esophagastroskop* OR eosophagoscop* OR duodenoscop* OR sigmoidoscop*):Ab,ti,kw) AND ('environmental impact'/exp OR 'environmental sustainability'/de OR 'waste disposal'/de OR 'climate change'/exp OR 'carbon footprint'/de OR 'carbon dioxide emission'/de OR 'particulate matter'/exp OR 'ionizing radiation'/de OR acidification/de OR eutrophication/de OR ecotoxicity/de OR 'land use'/de OR 'water footprint'/de OR 'resource use efficiency'/de OR 'resource depletion'/de OR 'fossil fuel'/de OR 'soil quality'/de OR ((environment* OR carbon OR co2 OR co-2 OR climate*) NEAR/3 (impact* OR sustain* OR footprint* OR emission* OR reduct* OR cost OR pollut*)) OR (greenhouse NEXT/1 (effect* OR gas*)) OR waterlog* OR water-log* OR ((climat* OR global) NEXT/1 (warming OR change OR action*)) OR (waste* NEAR/3 (disposal*)) OR green*-endoscop* OR (ozone* NEAR/3 (deplet* OR formation*)) OR (human NEAR/3 toxicit*) OR particulate-matter* OR PM10 OR PM2-5 OR PM-10 OR PM-2-5 OR ((ionizing OR ionising) NEAR/3 radiat*) OR acidificat* OR eutrophicat* OR ecotoxic* OR ecologic*-toxic* OR land-use OR land-transformation* OR (water nEAR/3 (footprint* OR consumption* OR deprevat*)) OR water-use OR resource-use OR (resource* NEAR/3 depletion*) OR fossil-fuel* OR soil-qualit*):Ab,ti,kw OR (sustainab* OR footprint* OR foot-print* OR environmental* OR climate* OR (green* NEXT/2 endoscop*) OR ozone* OR greenhouse OR pollut*):ti) NOT ('indocyanine green'/mj OR (greenlight* OR green-light* OR indocyanine-green*):ti) NOT ([animals]/lim NOT [humans]/lim) NOT ([conference abstract]/lim AND [2000-2022]/py) AND [english]/lim
Web of Science Core Collection	Web of Knowledge	1975 - Present	TS=((endoscop* OR colonoscop* OR gastroscop* OR esophagoscop* OR esophagastroduodenoscop* OR gastroduodenoscop* OR esophagastroskop* OR eosophagoscop* OR duodenoscop* OR sigmoidoscop*)) AND (TS=((environment* OR carbon OR co2 OR co-2 OR climate*) NEAR/2 (impact* OR sustain* OR footprint* OR emission* OR reduct* OR cost OR pollut*)) OR (greenhouse NEAR/1 (effect* OR gas*)) OR waterlog* OR water-log* OR ((climat* OR global) NEAR/1 (warming OR change OR action*)) OR (waste* NEAR/2 (disposal*)) OR green*-endoscop* OR (ozone* NEAR/2 (deplet* OR formation*)) OR (human NEAR/2 toxicit*) OR particulate-matter* OR PM10 OR PM2-5 OR PM-10 OR PM-2-5 OR ((ionizing OR ionising) NEAR/2 radiat*) OR acidificat* OR eutrophicat* OR ecotoxic* OR ecologic*-toxic* OR land-use OR land-transformation* OR (water nEAR/2 (footprint* OR consumption* OR deprevat*)) OR water-use OR resource-use OR (resource* NEAR/2 depletion*) OR fossil-fuel* OR soil-qualit*) OR TI=(sustainab* OR footprint* OR foot-print* OR environmental* OR climate* OR (green* NEAR/2 endoscop*)) OR ozone* OR greenhouse OR pollut*)) NOT TI=((greenlight* OR green-light* OR indocyanine-green*)) AND DT=(article) AND LA=(english)

*Science Citation Index Expanded (1975-present) ; Social Sciences Citation Index (1975-present) ; Arts & Humanities Citation Index (1975-present) ; Conference Proceedings Citation Index- Science (1990-present) ; Conference Proceedings Citation Index- Social Science & Humanities (1990-present) ; Emerging Sources Citation Index (2005-present) No other database limits were used than those specified in the search strategies.

Table S2 - Inventory Boundaries

Author, (year) [ref] Country	Pre-procedure					Procedure					Post-procedure						
	Patient travel	Staff travel	Bowel preparation	Vascular access	Waste	Energy use	Consumables	Capital equipment	Endoscope	Pharmaceuticals & medical gases	Waste	Food	Laundry	Histology	Energy use	Reprocessing of endoscope	Waste
Cunha Neves et al. (2023) [21] Portugal					X						X						X
De Jong et al. (2023) [22] Netherlands													X				
Desai et al. (2024) [23] USA					X	X					X					X	X
Elli et al. (2024) [24] Italy				X		X	X	X						X*	X		
Fichtl et al. (2024) [25] Germany						X											
Gayam (2020) [26] USA						X										X	
Gordon et al. (2021) [27] USA		X													X		
Grau et al. (2025) [28] France	X		X			X	X				X						
Henniger et al. (2023) [29] Germany					X	X	X				X				X		X
Henniger et al. (2023) [30] Germany							X				X						
Jalayeri Nia et al. (2024) [31] UK	X				X*	X*					X	X*					X*
Jung et al. (2025) [32] South Korea					X							X					X
Klose et al. (2024) [33] Germany	X	X															
Kojima et al. (2008) [34] Japan					X							X					X
Lacroute et al. (2023) [35] France	X	X		X	X	X	X	X	X	X	X	X	X		X	X	X
Lämmert et al. (2025) [36] Netherlands	X	X			X	X	X				X		X		X	X	X
Le et al. (2022) [37] USA						X				X							X
López-Muñoz et al. (2024) [38] Spain										X							X
López-Muñoz et al. (2023) [39] Spain							X										
Lotter et al. (2025) [40] Australia								X									
Martin-Cabazuelo et al. (2024) [41] Spain								X									
Namburar et al. (2022) [42] USA					X						X						X
Pioche et al. (2023) [43] France			X				X										X
Pioche et al. (2024) [44] France	X	X								X							X

Ribeiro et al. (2024) [45] Portugal					X					X							X
Rughwani et al. (2025) [46] India	X			X	X	X	X	X	X	X		X		X	X	X	X
Vaccari et al. (2018) [47] Italy				X						X							X
Zullo et al. (2023) [48] Italy						X*							X*				

* = data used from previously published article

Table S3 - Study Methods

Author, (year) [ref] Country	Data sources	Software used for impact assessment	Characterization method	Allocation method
Cunha Neves et al. (2023) [21] Portugal	Data collection: on site	N/a	Unknown	N/a
De Jong et al. (2023) [22] Netherlands	Data collection: on site	N/a	UK Government GHG Conversion Factors for Company Reporting (2016)	N/a
Desai et al. (2024) [23] USA	Data collection: on site	N/a	US EPA GHGe calculator	N/a
Elli et al. (2024) [24] Italy	Data collection: on site, manufacturers. Secondary data source: scientific literature (Gordon et al[27]). LCI database: Italian Higher Institute for Environmental Protection and Research (2022), emission factors report of the International Energy Agency.	Unknown	US EPA GHGe calculator	Unknown
Fichtl et al. (2024) [25] Germany	Data collection: on site.	N/a	German electricity generation average	N/a
Gayam (2020) [26] USA	Data collection: on site	N/a	Unknown	N/a
Gordon et al. (2021) [27] USA	Data collection: on site. LCI database: Ecoinvent database, chemical life cycle collaborative	SimaPro software v8.5.2.3	TRACI (EPA), CLiCC LCIA Estimate tool	APOS (attributional)
Grau et al. (2025) [28] France	Data collection: on site, material composition analysis. Secondary data source: scientific literature. LCI database: Ecoinvent v3.8, emission factors reported by ADEME	Granta Design	ADEME	Unknown
Henniger et al. (2023) [29] Germany	Data collection: on site. LCI database: Ecoinvent 3.8	Unknown	UK Government GHG Conversion Factors for Company Reporting (2022, v2.0).	Unknown
Henniger et al. (2023) [30] Germany	Data collection: on site. LCI database: Ecoinvent v3.8	Unknown	UK Government GHG Conversion Factors for Company Reporting.	Unknown
Jalayeri Nia et	Data collection: on site.	Unknown	Conversion factors from	Unknown

al. (2024) [31] UK			the Department for Energy Security and Net Zero (UK)	
Jung et al. (2025) [32] South Korea	Data collection: on site, manufacturers. Secondary data source: scientific literature (Gordon et al[27]). LCI database: Italian Higher Institute for Environmental Protection and Research (2022)	N/a	N/a	N/a
Klose et al. (2024) [33] Germany	Data collection: on site	N/a	GHG protocol conversion factors (2023)	N/a
Kojima et al. (2008) [34] Japan	Data collection: on site	N/a	N/a	N/a
Lacroute et al. (2023) [35] France	Data collection: on site. Secondary data source: monetary ratios. LCI database: Ecoinvent, AGRIBALYSE	Bilan Carbon tool v8.7.1	ADEME Carbon base, Guide sectorial BEGES Sante	Unknown
Lämmert et al. (2025) [36] Netherlands	Data collection: on site. Secondary data source: manufacturers. LCI database: Ecoinvent 3.9	SimaPro software v9	ReCiPe 2016	Unknown
Le et al. (2022) [37] USA	Data collection: on site. Secondary data source: manufacturers, cystoscope (Davis et al). LCI database: Ecoinvent 3.8	SimaPro software v9.1.1, Epi Suite 4.11.	ReCiPe 2016, USEtox 2.12	Unknown
López-Muñoz et al. (2024) [38] Spain	Data collection: on site, MCA. Secondary data source: Ecoinvent, Agribalyse, EF secondary data. LCI database: UK Government GHG Conversion Factors for Company Reporting.	OpenLCA v2.0.3	EF v3.0	Unknown
López-Muñoz et al. (2023) [39] Spain	Data collection: on site, MCA. Secondary data source: scientific literature. LCI database: Ecoinvent v3.8.1	OpenLCA v1.11	EF v3.0	Attributional analysis
Lotter et al. (2025) [40] Australia	Data collection: on site	Unknown	Unknown	N/a
Martin-Cabazuelo et al. (2024) [41] Spain	Data collection: on site, MCA. Secondary data source: scientific literature, assumption. LCI database: Ecoinvent v3.8.1.	OpenLCA v1.11	EF v3.0	Unknown
Namburar et al. (2022) [42] USA	Data collection: on site.	N/a	N/a	N/a
Pioche et al. (2023) [43] France	Data collection: on site, MCA, manufacturers. Secondary data source: scientific literature. LCI database: CES EduPack 2022	Ansys Granta Edupack software	ADEME	Unknown
Pioche et al. (2024) [44] France	Data collection: on site, MCA. Secondary data source: scientific literature, monetary ratio, assumption. LCI database: Ecoinvent v3.8.1, ADEME	SimaPro software v9.3	CML-IA baseline v3.07	Unknown
Ribeiro et al. (2024) [45] Portugal	Data collection: on site.	N/a	N/a	N/a
Rughwani et al. (2025) [46] India	Data collection: on site, manufacturers. LCI database: separate Emission Factors used	Excel, Microsoft	N/a	Unknown

Vaccari et al. (2018) [47] Italy	Data collection: Italian Hospital	N/a	N/a	N/a
Zullo et al. (2023) [48] Italy	Data collection: on site. Secondary data source: biopsy processing data from Gordon et al. [27]	Unknown	Institute for Sustainability Leadership of the University of Cambridge, IPCC	Unknown

ADEME, agence de la transition écologique; APOS, allocation at the point of substitution; BEGES, bilan d'émissions de gaz à effet de serre; CLiCC, chemical life cycle collaborative; CML-IA, institute for environmental sciences impact assessment; EF, environmental footprint; EPA, environmental protection agency; GHG, greenhouse gas; IPCC, Intergovernmental Panel on Climate Change; LCI, life cycle inventory; LCIA, life cycle impact assessment; MCA, material composition analysis; n/a, not applicable; TRACI, tool for the reduction and assessment of chemical and other environmental impacts; USA, United States of America; UK, United Kingdom

Table S4 - Energy use in the endoscopy department

Study	Desai et al. (2024) [23]	Elli et al. (2024) [24]	Fichtl et al. (2024) [25]	Gayam et al. (2020) [26]	Rughwani et al. (2025) [46]
Country	USA	Italy	Germany	USA	India
Endoscopy machine [kWh]		0.7	0.2-0.4	0.7*	
Monitors & computers [kWh]		0.2			
Anesthesia machine [kWh]		0.3		0.3*	
Room lighting [kWh]		1.2		1.2*	
Climate control [kWh]		2.5			
Reprocessing wash machines [kWh]		0.6		0.6*	
Entire department [kWh/day]	277.1			111.6	
Overall energy consumption per procedure [kWh]	19.8**	5.5	0.2-0.4	2.8*	4.0

kWh, kilowatt Hour; USA, United States of America

* Data not directly provided by article, calculations based on their provided average of 40 endoscopies per day.

** Data not directly provided by article, calculation based on their provided average for 100 procedures.

Table S5 - Patient and staff travel emissions in gastrointestinal endoscopy

Study	Jalayeri Nia et al. (2024) [31]	Klose et al. (2024) [33]	Lacroute et al. (2023) [35]	Pioche et al. (2023) [43]	Rughwani et al. (2025) [46]
Country	UK	Germany	France	France	India
Scope	CCE	Outpatient procedures	Outpatient procedures	SBCE	Outpatient procedures
Patient travel CO₂e/procedure [kg]	6.62-17.09	10.7	15.4	18.4	31.95
Staff travel CO₂e /procedure [kg]	n/a	0.8	1.94	0.1	n/a

CCE, colon capsule endoscopy; CO₂e, carbon dioxide equivalent; n/a, not assessed; kg, kilogram, SBCE, small-bowel capsule endoscopy; UK, United Kingdom

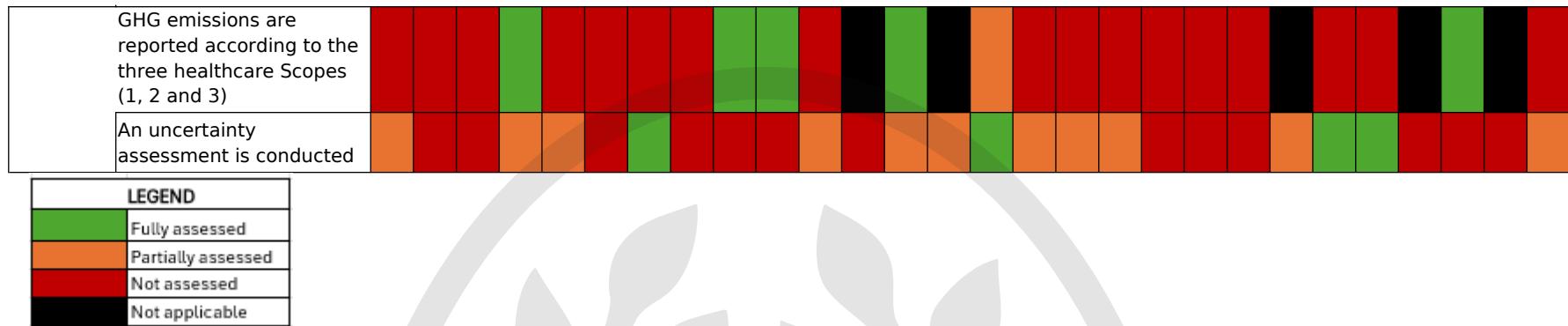
Table S6 - Waste generation in the endoscopy department

Mean waste and waste components							
Author (year) [ref.]	Country	Amount of procedures	Infectious waste (%)	Sharps waste (%)	General waste (%)	Recyclables (%)	Waste, mean (kg/procedure)
Kojima et al. (2018) [34]	Japan	307	68.9-92.9	0-7.1	0-19.0	0-4.9	0.30
Vaccari et al. (2018) [47]	Italy	Unknown					0.50 3.09/bed
Namburar et al. (2022) [42]	USA	278	28		64	9	2.26-2.27
Cunha Neves et al. (2023) [21]	Portugal	535	41.2-61.2		38.8-50.9	0-7.2	0.5-1.0
De Jong et al. (2023) [22]	Netherlands	36			85-91.1	8.9-9.6	0.89-0.97
Lacrooute et al. (2023) [35]	France	8,524					1.5
Henniger et al. (2023) [30]	Germany	1,666			93.7	6.3	3.6
Ribeiro et al. (2024) [46]	Portugal	241	74.1	0.9	7.2	17.8	1.8
Desai et al. (2024) [23]	USA	450	24	4	57.6	14.4	3.03
Rughwani et al. (2025) [46]	India	3,873	64.8	1.1	21.8	12.2	0.50
Jung et al. (2025) [32]	South Korea	3,922					1.34

Categorized using the World Health Organization (WHO) standard healthcare waste categories, excluding pathological, chemical and pharmaceutical waste, as no study examined these categories. Kg, kilogram; ref., reference; USA, United States of America.

Table S7 - Risk of bias assessment for included studies using Collaboration for Environmental Evidence Critical Appraisal Tool (CEECAT)

Author (year) [ref] Country	Criterion 1: Risk of Confounding biases	Criterion 2: Risk of post-intervention /exposure selection biases	Criterion 3: Risk of misclassified comparison biases	Criterion 4: Risk of performance biases	Criterion 5: Risk of detection biases	Criterion 6: Risk of outcome reporting biases	Criterion 7: Risk of outcome assessment biases	Overall judgement
Operationalization by team								
	Specific factors (e.g. procedure type, device reuse, energy mix) affecting results	Differences in included procedures or settings after intervention/audit	Used for non-interventional studies. Incorrect or inconsistent classification of comparators	Used for interventional studies. Variations in staff behavior or protocols influencing outcomes	Inconsistent or non-standardized outcome measurement	Selective or incomplete reporting of environmental outcomes	Outcome assessors influenced by knowledge of exposure/intervention	Combined risk-of-bias rating based on criteria 1-7
Cunha Neves et al. (2023) [21] Portugal	Low risk of bias	Low risk of bias	Not Applicable	Low risk of bias	Low risk of bias	Low risk of bias	Medium risk of bias	Medium risk of bias
De Jong et al. (2023) [22] Netherlands	High risk of bias	Low risk of bias	Not Applicable	Low risk of bias	Medium risk of bias	Low risk of bias	High risk of bias	High risk of bias
Desai et al. (2024) [23] USA	Low risk of bias	Low risk of bias	Medium risk of bias	Not Applicable	Medium risk of bias	Low risk of bias	Medium risk of bias	Medium risk of bias
Elli et al. (2024) [24] Italy	High risk of bias	Medium risk of bias	Medium risk of bias	Not Applicable	Low risk of bias	High risk of bias	Medium risk of bias	Medium risk of bias
Fichtl et al. (2024) [25] Germany	High risk of bias	Low risk of bias	Not Applicable	Low risk of bias	Medium risk of bias	Low risk of bias	High risk of bias	High risk of bias
Gayam (2020) [26] USA	High risk of bias	Medium risk of bias	High risk of bias	Not Applicable	Medium risk of bias	High risk of bias	High risk of bias	High risk of bias
Gordon et al. (2021) [27] USA	Low risk of bias	Medium risk of bias	Not Applicable	Medium risk of bias	Medium risk of bias	Medium risk of bias	Medium risk of bias	Medium risk of bias
Grau et al. (2025) [28] France	Low risk of bias	Low risk of bias	Not Applicable	Low risk of bias	Low risk of bias	medium risk of bias	Medium risk of bias	medium risk of bias
Henniger et al. (2023) [29] Germany	Low risk of bias	Medium risk of bias	Not Applicable	Medium risk of bias	Medium risk of bias	Medium risk of bias	Medium risk of bias	High risk of bias
Henniger et al. (2023) [30] Germany	High risk of bias	Medium risk of bias	Not Applicable	Low risk of bias	Medium risk of bias	Low risk of bias	Medium risk of bias	High risk of bias
Jalayeri Nia et al. (2024) [31] UK	High risk of bias	Medium risk of bias	Medium risk of bias	Not Applicable	Medium risk of bias	Medium risk of bias	Medium risk of bias	High risk of bias
Jung et al. (2025) [32] South Korea	high risk of bias	Low risk of bias	Medium risk of bias	Not Applicable	Medium risk of bias	Low risk of bias	Medium risk of bias	high risk of bias
Klose et al. (2024) [33] Germany	High risk of bias	Medium risk of bias	Medium risk of bias	Not Applicable	Medium risk of bias	Medium risk of bias	Medium risk of bias	High risk of bias
Kojima et al. (2008) [34] Japan	High risk of bias	Low risk of bias	Not Applicable	High risk of bias	Medium risk of bias	Medium risk of bias	Medium risk of bias	High risk of bias
Lacroute et al. (2023) [35] France	Low risk of bias	Low risk of bias	Low risk of bias	Not Applicable	Medium risk of bias	Low risk of bias	Low risk of bias	Medium risk of bias
Lämmert et al. (2025) [36] Netherlands	high risk of bias	Low risk of bias	Low risk of bias	Not Applicable	Medium risk of bias	Low risk of bias	Medium risk of bias	high risk of bias
Le et al. (2022) [37] USA	Low risk of bias	Low risk of bias	Medium risk of bias	Not Applicable	Low risk of bias	Low risk of bias	Medium risk of bias	Medium risk of bias


López-Muñoz et al. (2024) [40] Spain	High risk of bias	Low risk of bias	Medium risk of bias	Not Applicable	Medium risk of bias	Medium risk of bias	Medium risk of bias	High risk of bias
López-Muñoz et al. (2023) [3] Spain	High risk of bias	Low risk of bias	Not Applicable	Low risk of bias	Low risk of bias	Medium risk of bias	Medium risk of bias	High risk of bias
Lotter et al. (2025) [40] Australia	high risk of bias	Low risk of bias	high risk of bias	Not Applicable	Low risk of bias	Low risk of bias	Medium risk of bias	high risk of bias
Martín-Cabazuelo et al. (2024) [41] Spain	High risk of bias	Low risk of bias	Medium risk of bias	Not Applicable	Medium risk of bias	Medium risk of bias	Medium risk of bias	High risk of bias
Namburar et al. (2022) [42] USA	High risk of bias	Medium risk of bias	Medium risk of bias	Not Applicable	Medium risk of bias	Low risk of bias	Medium risk of bias	High risk of bias
Pioche et al. (2023) [43] France	High risk of bias	Low risk of bias	Medium risk of bias	Not Applicable	Medium risk of bias	Medium risk of bias	Medium risk of bias	High risk of bias
Pioche et al. (2024) [44] France	High risk of bias	Low risk of bias	Low risk of bias	Not Applicable	Medium risk of bias	Medium risk of bias	Medium risk of bias	High risk of bias
Ribeiro et al. (2024) [45] Portugal	High risk of bias	Low risk of bias	Medium risk of bias	Not Applicable	Medium risk of bias	Medium risk of bias	Medium risk of bias	High risk of bias
Rughwani et al. (2025) [46] India	high risk of bias	Low risk of bias	Low risk of bias	Not Applicable	Medium risk of bias	Low risk of bias	Medium risk of bias	high risk of bias
Vaccari et al. (2018) [47] Italy	High risk of bias	Low risk of bias	Low risk of bias	Not Applicable	Low risk of bias	Medium risk of bias	Medium risk of bias	High risk of bias
Zullo et al. (2023) [48] Italy	High risk of bias	Low risk of bias	Medium risk of bias	Not Applicable	Medium risk of bias	Medium risk of bias	Medium risk of bias	High risk of bias

Ref, reference; UK, United Kingdom; USA, United States of America.

Each CEECAT domain was adapted to GI endoscopy sustainability studies: study design (LCA, waste audit, carbon footprinting) was assessed for methodological appropriateness; scope and system boundaries for inclusion of relevant stages; data quality for completeness and reliability; analysis transparency for clarity of methods and assumptions; uncertainty/sensitivity for variability in energy use, product lifespan, or waste handling; conflicts of interest for potential stakeholder influence; and reporting completeness for absolute and normalized environmental impacts. Scoring followed these criteria to ensure consistent, transparent risk-of-bias assessment.

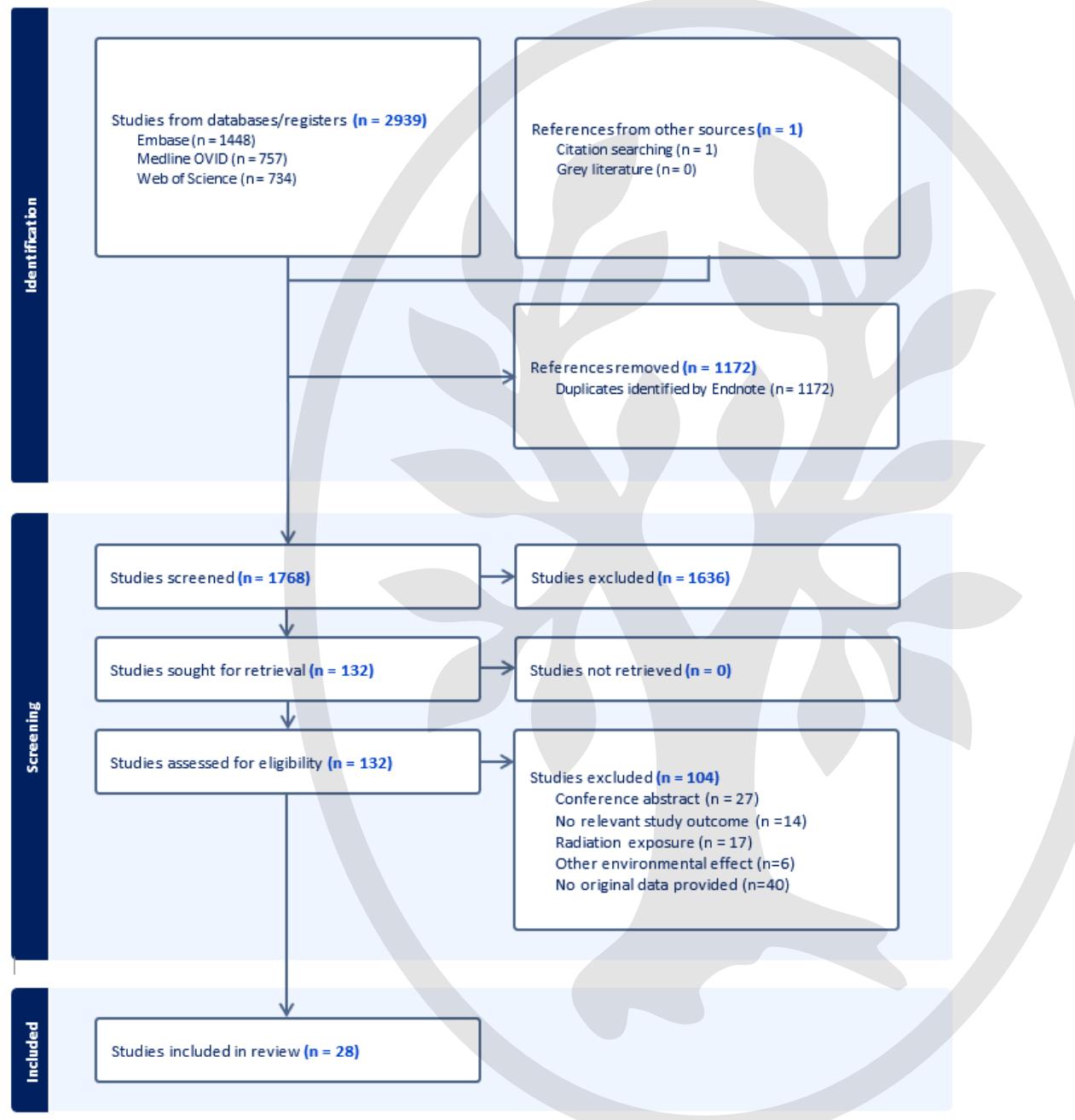
Table S8 - Quality assessment for included studies using ESGE's E-SPARE checklist

		[21]	[22]	[23]	[24]	[25]	[26]	[27]	[28]	[29]	[30]	[31]	[32]	[33]	[34]	[35]	[36]	[37]	[38]	[39]	[40]	[41]	[42]	[43]	[44]	[45]	[46]	[47]	[48]	
Introduction	A study hypothesis or objective is stated	Green	Red	Green	Orange	Orange	Red	Grey	Green	Orange	Green	Green	Green	Green	Red	Green	Green	Green	Green	Green	Orange	Green	Green	Green	Green	Green	Green	Green	Green	
Methods	The functional unit is defined	Red	Red	Orange	Orange	Orange	Orange	Grey	Green	Green	Red	Orange	Green	Green	Green	Red	Green	Green	Green	Green	Orange	Green	Green	Green	Green	Green	Green	Green	Green	
	The study (system) boundary is clearly defined	Green	Orange	Green	Green	Green	Orange	Green	Green	Orange	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green							
	The clinical setting, care pathway or departmental characteristics under analysis are clearly described	Green	Green	Green	Orange	Orange	Orange	Green	Green	Green	Red	Green	Green	Green	Green	Green	Green	Green	Green	Green	Orange	Orange	Green	Green	Green	Green	Green	Green	Green	
	The methodological approach used to assess environmental impacts is explicitly stated and justified (e.g. carbon footprinting, LCA)	Orange	Red	Orange	Orange	Red	Red	Green	Green	Orange	Green	Black	Black	Orange	Green	Green	Green	Green	Green	Green	Green	Black	Black	Green	Green	Green	Green	Green	Orange	
	The environmental impacts chosen for assessment are defined and justified, using standard terminology and units of measurement	Orange	Black	Orange	Orange	Orange	Orange	Green	Green	Green	Green	Orange	Orange	Black	Black	Orange	Orange	Orange	Orange	Orange										
	Assumptions or exclusions are clearly stated and justified	Green	Orange	Red	Orange	Orange	Red	Green	Orange	Orange	Orange	Green	Green	Green	Green	Orange	Orange	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green	Red	Orange
	An inventory of all processes within the system boundary is compiled and available to review	Green	Red	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green	Red	Green													
	Allocation methods are described and justified	Green	Orange	Orange	Red	Orange	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green	Orange	Green										
	Emission factors sources are stated	Green	Red	Green	Black	Black	Green	Green	Black	Black	Green	Green	Green	Green	Green	Black	Black	Black	Green	Green	Black	Black	Green							
Results	Endoscopic procedures or devices included in the analysis are characterized	Green	Red	Green	Green	Orange	Red	Green	Green	Orange	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green	Red	Green	Green	Red						

ESGE, European Society of Gastroenterology; E-SPARE, endoscopic sustainability primary reporting essentials; GHG, greenhouse gas; LCA, life cycle assessment.

Table S9 - Quality assessment of included studies describing LCAs

Appraisal criteria	Indicator(s)	Operationalization by our research team - adapted from Kouwenberg et al. (2024) [20]	Gordon (2021) [27]	Grau (2025) [28]	Lämmel (2025) [36]	Le (2022) [37]	López Muñoz (2023) [39]	López Muñoz (2024) [38]	Lotter (2025) [40]	Martín Cabazuelo (2024) [41]	Pioche (2023) [43]	Pioche (2024) [44]
<u>Phase 1: goal and scope (13 points)</u>												
Study goal is clearly stated, including the study's rationale (1) intended application (1) and intended audience (1)	Transparency		2	2	2	2	3	2	2	2	2	2
LCA method is clearly stated (1)	Transparency	If the term LCA was not explicitly used, this item scored zero points	1	1	1	1	1	1	1	1	1	1
Functional unit is clearly defined and measurable (1) justified (1) and consistent with the study's intended application (1)	Consistency	No points were subtracted if the term "functional unit" was not explicitly used. Points were given based on a clear description of the unit of analysis. In case no intended application was mentioned (scoring item 1), consistency with the study's aim was assessed.	3	2	3	2	1	2	2	3	2	2
The system studied is adequately described with clearly stated system boundaries (1) , life cycle stages (1) , and appropriate justification of any omitted stages (1)	Transparency; bias	Points for appropriate justification of any omitted stages were not given if the study listed only excluded elements, without an explanation of why these were excluded.	3	2	2	2	3	3	3	3	3	3
The system covers production (1) use/reuse (1) and disposal (1) of materials and energy	Internal validity, completeness	The original assessment tool included: "half mark if only for energy and vice versa," which was unclear for our reviewers and left out of the assessment.	2	2	2	1,5	2	1,5	1	1,5	1,5	1,5
<u>Phase 2: Inventory analysis (7 points)</u>												
The data collection process is clearly explained, including the source(s) of foreground material weights and energy values (1) , the source(s) of reference data	Transparency; internal validity		3	2	3	3	3	3	3	3	3	2


normalized results were reported)	cy	presented in general.									
A contribution analysis is performed and clearly reported (1) and hotspots are identified (1)		A point was given for contribution analysis if the results were summed up and presented as a total footprint.	2	2	2	2	1	2	2	2	2
Phase 4: Interpretation (9 points)											
Conclusions are consistent with the goal and scope (1) and the potential impact of omissions or assumptions on the study's outcomes are described (1)	Internal validity; consistency	If no goal and scope were described earlier, this item was judged based on the clearness of the provided conclusion(s) in general.	1	1	1	2	2	2	1	2	2
Results are contextualized through the use of sensitivity analysis (1) and uncertainty analysis (1)	Internal validity	If the study did not explicitly mention "sensitivity" or "uncertainty analysis," but presented ranges or standard deviations: 1 point was given for "uncertainty analysis."	1	0	0	1	0	0	0	0	1
Limitations are adequately discussed (1) and the potential impact of omissions or assumptions on the study's outcomes are described (1)	Bias	Only points given when the potential impact of the omission on the study's outcomes were explicitly mentioned, i.e., whether the omission likely led to an under- or overestimation.	1	1	1	2	1	2	2	2	1
The assessment has been critically appraised (peer review if journal article or independent, external critical review if report/thesis) (1)	Bias	No point was given in the case of a letter to the editor or a commentary because these are generally not peer-reviewed. However, if an included letter is peer-reviewed, 1 point will be given.	1	1	1	1	1	1	1	1	1
Source(s) of funding and any potential conflict(s) of interest are disclosed (1) and are unlikely to be a source of bias (1)	Bias	No point was given for the first item if only conflict(s) of interest were disclosed but no source(s) of funding were reported.	0	2	2	2	2	2	2	2	1
		TOTAL (out of 35)	28	24	25	27,5	26	26,5	23	29,5	25,5
		Percentage	80%	69%	71%	79%	74%	76%	66%	84%	73%
											70%

Based on: Drew, J. et al. (1997)[18] and Weidema, B. P. et al. (1997)[19]. LCA, life cycle assessment; SBCE, small bowel capsule endoscopy

* The article mentioned that a sensitivity analysis was performed, but no data is shown in the article.

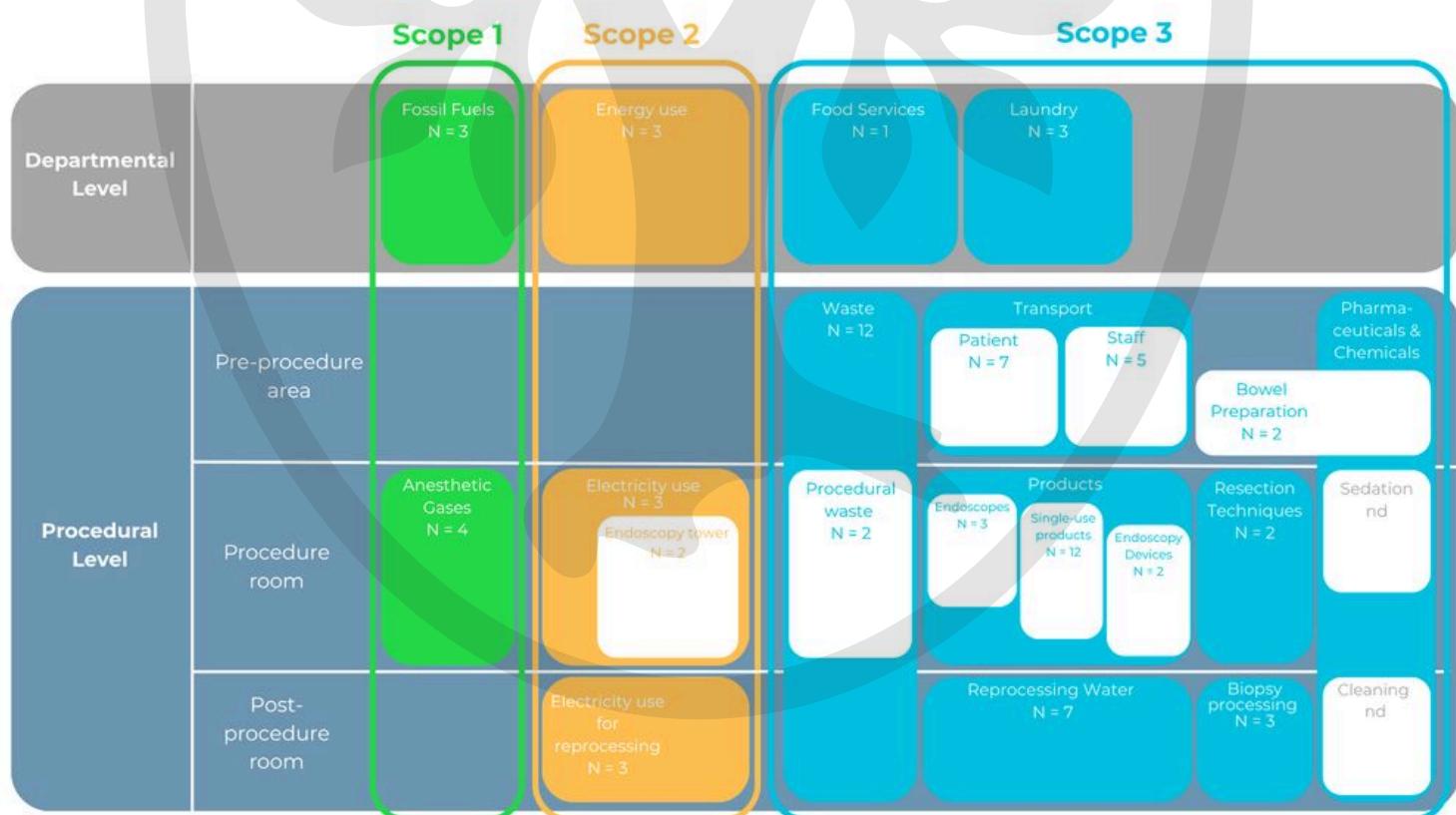
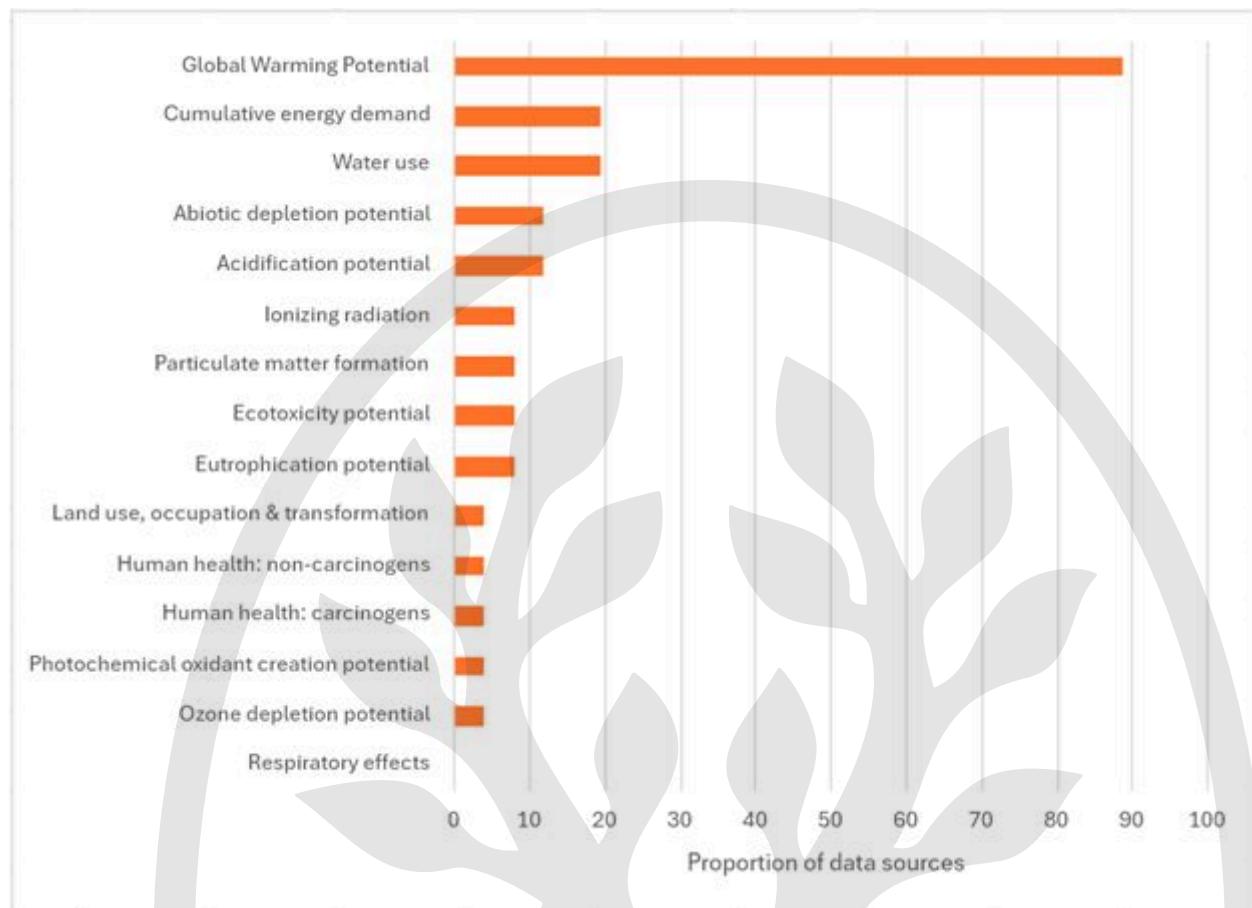
Figure S1 - PRISMA flow diagram of studies included and excluded in the systematic review

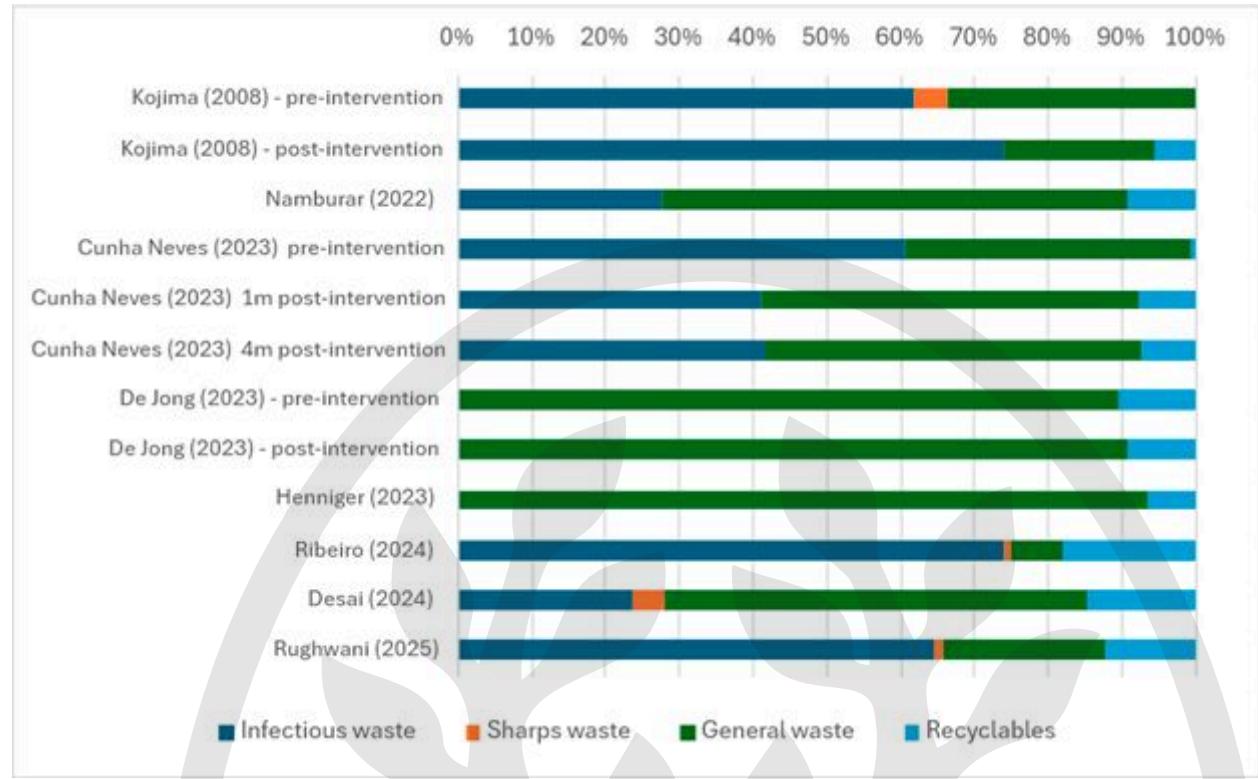
PRISMA, preferred reporting items for systematic reviews and meta-analyses.

PRISMA Abstract checklist

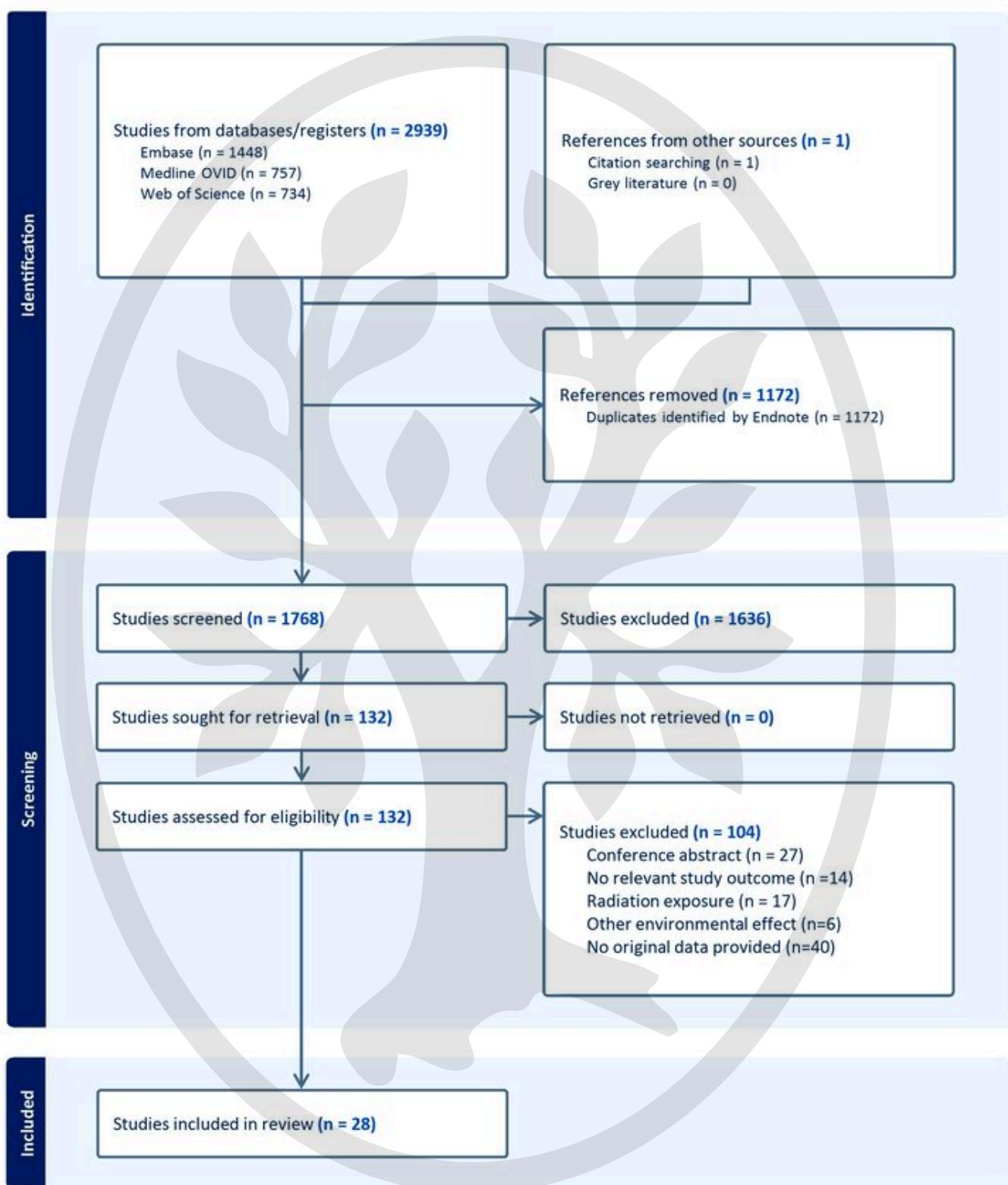
Section and Topic	Item	Checklist item	Reported (Yes/No)
TITLE			
Title	1	Identify the report as a systematic review.	Yes
BACKGROUND			
Objectives	2	Provide an explicit statement of the main objective(s) or question(s) the review addresses.	Yes
METHODS			
Eligibility criteria	3	Specify the inclusion and exclusion criteria for the review.	Yes
Information sources	4	Specify the information sources (e.g. databases, registers) used to identify studies and the date when each was last searched.	Yes
Risk of bias	5	Specify the methods used to assess risk of bias in the included studies.	Yes
Synthesis of results	6	Specify the methods used to present and synthesise results.	Yes
RESULTS			
Included studies	7	Give the total number of included studies and participants and summarise relevant characteristics of studies.	Yes
Synthesis of results	8	Present results for main outcomes, preferably indicating the number of included studies and participants for each. If meta-analysis was done, report the summary estimate and confidence/credible interval. If comparing groups, indicate the direction of the effect (i.e. which group is favoured).	Yes
DISCUSSION			
Limitations of evidence	9	Provide a brief summary of the limitations of the evidence included in the review (e.g. study risk of bias, inconsistency and imprecision).	Yes
Interpretation	10	Provide a general interpretation of the results and important implications.	Yes
OTHER			
Funding	11	Specify the primary source of funding for the review.	Yes
Registration	12	Provide the register name and registration number.	Yes

From: Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ* 2021;372:n71. doi: 10.1136/bmj.n71



PRISMA checklist


Section and Topic	Item #	Checklist item	Location where item is reported
TITLE			
Title	1	Identify the report as a systematic review.	1
ABSTRACT			
Abstract	2	See the PRISMA 2020 for Abstracts checklist.	2
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of existing knowledge.	3
Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	3
METHODS			
Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	5
Information sources	6	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.	5
Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.	5, Table S1, Figure S1
Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.	5
Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	5-6
Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	6
	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	5-6
Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.	6
Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	6
Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).	6
	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	N/a
	13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	N/a
	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	N/a
	13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).	N/a
	13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	N/a
Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	N/a
Certainty assessment	15	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome.	N/a

RESULTS			
Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram.	7, Figure S1
	16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.	7, Figure S1
Study characteristics	17	Cite each included study and present its characteristics.	7-9, Table 2, Table S2-S6
Risk of bias in studies	18	Present assessments of risk of bias for each included study.	9, Table S9
Results of individual studies	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.	7-9, Table 1
Results of syntheses	20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.	9, Table S7
	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	N/a
	20c	Present results of all investigations of possible causes of heterogeneity among study results.	N/a
	20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.	N/a
Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.	N/a
Certainty of evidence	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.	N/a
DISCUSSION			
Discussion	23a	Provide a general interpretation of the results in the context of other evidence.	10
	23b	Discuss any limitations of the evidence included in the review.	11
	23c	Discuss any limitations of the review processes used.	11
	23d	Discuss implications of the results for practice, policy, and future research.	11
OTHER INFORMATION			
Registration and protocol	24a	Provide registration information for the review, including register name and registration number, or state that the review was not registered.	4
	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	4
	24c	Describe and explain any amendments to information provided at registration or in the protocol.	N/a
Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.	11
Competing interests	26	Declare any competing interests of review authors.	11
Availability of data, code and other materials	27	Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.	N/a


N/a, not applicable

From: Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ* 2021;372:n71. doi: 10.1136/bmj.n71

Figure S1 – PRISMA flow diagram of studies included and excluded in the systematic review

PRISMA, preferred reporting items for systematic reviews and meta-analyses.