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ABSTRACT
Background: Inflammatory bowel disease (IBD) is a chronic, resource-intensive condition requiring repeated diagnostic as-
sessments. Healthcare contributes ~5% of global greenhouse gas emissions, and key diagnostic tools in IBD—gastrointestinal 
(GI) endoscopy, computed tomography (CT) and magnetic resonance imaging (MRI)—are associated with substantial environ-
mental impacts. The environmental burden of these diagnostic pathways, however, remains underappreciated.
Aim: To systematically assess the carbon footprint and environmental impact of diagnostic imaging modalities commonly used 
in IBD, with particular focus on intestinal ultrasound (IUS) as a sustainable, low-carbon alternative.
Methods: A systematic review was conducted according to PRISMA 2020 guidelines. PubMed, Scopus and Embase were 
searched from inception to May 2025 for studies reporting the environmental impact of diagnostic modalities relevant to IBD 
care (GI endoscopy, CT, MRI and IUS). Studies providing quantitative or qualitative data on carbon footprint, energy consump-
tion, waste generation or sustainability metrics were included. Data were synthesised narratively.
Results: Thirty-one studies were included. GI endoscopy generates approximately 7.8–56.4 kg CO2-equivalent per procedure, 
largely driven by transportation, energy use and disposables. CT carries a carbon footprint of 7–10 kg CO2e per procedure in direct 
life cycle assessments, while broader institutional and modelling estimates extend this to ~20 kg CO2e depending on throughput, 
protocol and energy sources. MRI is substantially more energy-intensive, ranging from 17–22 kg CO2e per scan in most studies, 
and up to 200–300 kg CO2e for high-field (3T) systems when full life cycle impacts are included. In contrast, IUS produces only 
0.5–1.5 kg CO2e per scan, with minimal energy demand and negligible waste. IUS enables point-of-care assessments, reducing 
patient travel and associated emissions.
Conclusion: GI endoscopy, CT and MRI are indispensable in IBD care but carry considerable environmental costs. The broader 
adoption of IUS offers a clinically effective, low-carbon alternative that can contribute to more sustainable IBD management, 
aligning with planetary health goals.
Trial Registration: PROSPERO International Prospective Register of Systematic Reviews: CRD420251088016
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1   |   Introduction

The management of inflammatory bowel disease (IBD) presents 
a significant challenge, requiring long-term, resource-intensive 
care. Globally, healthcare contributes ~5% of greenhouse gas 
(GHG) emissions, underscoring its role as both a provider of 
health and a driver of environmental harm [1–5]. IBD, encom-
passing Crohn's disease (CD) and ulcerative colitis (UC), is a 
lifelong condition that demands repeated diagnostic assess-
ments for disease monitoring, treatment decisions and cancer 
surveillance [6–8], exemplifying the carbon-intensive nature of 
modern healthcare [6, 9].

Colonoscopy and gastrointestinal (GI) endoscopy, computed 
tomography (CT) and magnetic resonance imaging (MRI) 
are cornerstones of IBD management, but are also among 
the most resource-intensive diagnostic tools [6, 7, 10]. These 
procedures, while clinically indispensable in many scenarios 
[11, 12], contribute substantially to healthcare-related CO2 
emissions (CO2e) [12–16] through high energy consumption, 
widespread use of single-use devices, complex sterilisation 
processes, and travel by patients and healthcare providers 
[10, 13, 17–21].

In contrast, intestinal ultrasound (IUS) has emerged as a non-
invasive, radiation-free, point-of-care imaging modality offering 
excellent diagnostic accuracy in IBD [22–30], supporting both 
disease diagnosis and longitudinal monitoring [30–33]. Unlike 
cross-sectional imaging, IUS offers clinical benefits with a min-
imal environmental footprint [34, 35], generating negligible 
waste and reducing travel-related emissions by often being per-
formed at the bedside [34, 36].

Given the dual pressures of providing high-quality care and re-
ducing healthcare's environmental impact, it is essential to eval-
uate the sustainability of diagnostic pathways alongside their 
clinical efficacy. The present systematic review aims to compre-
hensively assess the carbon footprint and environmental impact 
of key imaging modalities used in IBD management, focusing 
particularly on the potential of IUS as a sustainable, low-carbon 
alternative that can align clinical excellence with planetary 
health goals.

2   |   Methods

This systematic review was conducted following the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) 2020 guidelines. A comprehensive literature 
search was performed in PubMed, Scopus and Embase data-
bases from inception to May 2025. The search strategy com-
bined keywords and MeSH terms related to IBD, diagnostic 
imaging modalities commonly used in IBD (colonoscopy/GI 
endoscopy, CT, MRI, IUS) and environmental impact (carbon 
footprint, life cycle assessment, sustainability, energy con-
sumption, resource use). The detailed search strategy is pro-
vided in Appendices S1 and S2. The search was supplemented 
by manual screening of reference lists and relevant policy re-
ports related to healthcare sustainability and climate–health 
frameworks.

2.1   |   Eligibility Criteria

We included peer-reviewed articles and reports providing quan-
titative or qualitative data on the environmental impact of diag-
nostic imaging relevant to IBD care. Since only a limited number 
of studies were conducted directly in IBD populations, we also in-
cluded studies assessing these modalities in broader gastrointes-
tinal or cross-sectional imaging contexts, provided they reported 
outcomes applicable to IBD diagnostics. Eligible study designs 
were life cycle assessments (LCAs), prospective or retrospective 
audits, observational studies, conference abstracts with available 
new data, qualitative sustainability reports, and systematic and 
narrative reviews, which were included to retrieve additional rel-
evant studies and references not identified in the primary search.

We excluded editorials, letters, conference abstracts without full 
data, non-peer-reviewed sources, papers lacking consistent or 
extractable data and studies focused solely on therapeutic inter-
ventions. No restrictions were applied regarding language, pub-
lication date or geographic location.

2.2   |   Study Selection

All retrieved articles were exported and screened using 
Rayyan.ai, a web-based platform for systematic review manage-
ment. Duplicates were automatically identified and removed. 
Two independent reviewers (S.M. and A.Z., blinded to each 
other's decisions) screened titles and abstracts for eligibility. 
Discrepancies were resolved through discussion or consultation 
with a third reviewer (S.D.).

2.3   |   Data Extraction

Data were extracted independently by two reviewers (S.M. and 
A.Z.) using a standardised form, including: first author, year of 
publication, diagnostic modality assessed, environmental met-
ric reported (e.g., kg CO2e per procedure), methodological ap-
proach (e.g., LCA) and key findings related to environmental 
impact. Outcomes of interest were carbon footprint per proce-
dure (kg CO2e), energy consumption (kWh), waste generation 
(solid and liquid), transport-related emissions and any reported 
sustainability interventions.

2.4   |   Quality Assessment

The methodological quality and risk of bias (RoB) of the included 
studies were assessed using tools adapted for environmental health 
research and study design. LCA studies were evaluated against 
ISO 14040/14044 standards, with particular attention to system 
boundaries, functional units and completeness of reported impact 
categories [37]. Observational audit studies (prospective or retro-
spective) were assessed using the Joanna Briggs Institute (JBI) crit-
ical appraisal checklists for prevalence and cross-sectional studies 
[38]. Narrative reviews, commentaries and descriptive reports 
were not formally appraised for risk of bias, but their transparency 
and reporting were qualitatively considered concerning criteria 
from the CASP qualitative appraisal tool [38, 39].



3

2.5   |   Data Synthesis

Studies were grouped by diagnostic modality and summarised 
in structured tables. Where appropriate, findings were also pre-
sented in visual summaries. Data were synthesised narratively. 
Study-level RoB judgements, assessed as previously described, 
are summarised in the ‘Risk of bias’ column of Tables 1–3.

3   |   Results

3.1   |   Study Selection

The initial literature search across Embase, Scopus and PubMed 
yielded a total of 169 records. After the removal of 10 duplicates, 
159 records underwent title and abstract screening. Based on 
predefined inclusion criteria targeting the environmental im-
pact of diagnostic imaging and endoscopic pathways in IBD, 76 
articles were selected for full-text evaluation. Additionally, one 
relevant study was manually retrieved from a conference report 
and included in the final synthesis [34]. Following a detailed 
assessment, 31 studies met the eligibility criteria and were in-
cluded in the final qualitative synthesis. The study selection pro-
cess is depicted in the PRISMA 2020 flow diagram (Figure 1).

The included studies focused on the environmental impact of 
three main diagnostic modalities used in IBD management: 
(1) gastrointestinal (GI) endoscopy/colonoscopy, (2) cross-
sectional imaging (CT and MRI) and (3) ultrasound (US)-based 
modalities.

3.2   |   Study Characteristics

Among the 31 included studies, 14 focused on the environmen-
tal impact of GI endoscopy [21, 40–52], 13 on cross-sectional 
imaging modalities (CT, MRI) [5, 10, 45, 53–62] and 7 on US 
[5, 34, 45, 53, 63–65]. Notably, three studies [5, 45, 53] contrib-
uted data to more than one diagnostic modality category (CT, 
MRI and US). The studies originated from a wide range of coun-
tries, reflecting broad international interest in sustainable gas-
troenterological care (see Tables  1–3). Most studies evaluated 
carbon dioxide equivalents (CO2-eq), solid and liquid waste 
production, energy use (kWh) and water consumption, with 
some also reporting indirect emissions related to transportation, 
infrastructure and equipment sterilisation. Most included stud-
ies on endoscopy, CT and MRI reported data at the modality or 
departmental level (gastrointestinal endoscopy units or radiol-
ogy departments) rather than exclusively in IBD-specific co-
horts. By contrast, IUS studies were more disease-specific, with 
three studies evaluating IUS in IBD-specific cohorts [34, 63, 64]. 
LCA studies generally adhered to ISO 14040/14044 guidelines. 
However, the completeness of system boundaries and transpar-
ency of data sources varied across studies. Approximately 60% 
of LCA studies provided full inventory data and explicit alloca-
tion assumptions, while the remaining studies lacked detailed 
reporting on indirect emissions and waste management phases, 
indicating a moderate RoB. Observational and audit studies were 
of variable quality, with most studies providing relevant data, 
but several failed to comprehensively report key sustainability 
metrics, introducing potential underreporting bias. Narrative 

and scoping reviews included in the analysis were used primar-
ily to retrieve additional references and did not directly contrib-
ute quantitative data.

3.2.1   |   GI Endoscopy

Fourteen studies specifically assessed the environmental foot-
print of GI endoscopic procedures, focusing on carbon emis-
sions, waste generation, energy consumption and sustainability 
interventions [21, 40–52] (Table 1).

Among the included studies, five employed formal LCAs 
[21, 40, 48–50], judged at low RoB due to transparent methodol-
ogy and standardised reporting. Observational audits by Desai 
et al. [42], Rughwani et al. [44], Lacroute et al. [46] and Henniger 
et  al. [47] were generally at moderate RoB, with strengths in 
real-world data but limitations in scope and generalisability. 
Elli et  al. [43] used a modelling approach based on national 
datasets, also at moderate RoB, given reliance on assumptions. 
Four studies were reviews, commentaries or descriptive reports 
[41, 45, 51, 52], carrying a high RoB as they relied mainly on 
reported secondary data.

Across studies, GI endoscopy consistently emerged as a signif-
icant contributor to healthcare-related carbon emissions and 
resource consumption, with reported carbon footprints ranging 
from 7.8 to 56.4 kg CO2e per procedure, depending on methodol-
ogy and inclusion of patient travel [21, 40, 42–44, 46–50].

Lämmer et al. [40], using a comprehensive LCA in a Dutch uni-
versity hospital, reported the highest emissions values, with a 
footprint of 56.4 kg CO2e per colonoscopy, of which 76.5% was 
attributable to the transportation of patients and staff and 13.5% 
to disposables. Also, in other studies [40, 44, 46, 52], the main 
emission sources included patient and staff travel, energy con-
sumption (including heating and electricity for procedure rooms) 
[47, 52] and single-use instruments [48, 49, 52]. In a prospective 
UK study, the carbon footprint per GI endoscopy was 38.5 kg 
CO2-equivalent, which decreased to 6.5 kg CO2e when patient 
travel was excluded. Travel alone may account for 83% of emis-
sions, while electricity, medical gases and water contributed less 
substantially [44]. Similarly, Lacroute et  al. [46] reported that 
ambulatory GI endoscopy procedures were associated with an 
average carbon footprint of 28.4 kg CO2e, with major emission 
sources including patient and staff travel (45%), medical equip-
ment use (32%) and energy consumption (12%).

Henniger et  al. [47] reported a low annual carbon footprint 
of 62.7 tons CO2e for a high-volume German endoscopy unit, 
corresponding to ~7.8 kg CO2e per procedure, with heating 
and the use of consumables identified as the largest contrib-
utors. Their analysis excluded patient and staff travel, as well 
as capital goods such as endoscopes and washing machines 
[47]. Additionally, Desai et  al. [42] conducted a prospective 
audit in a tertiary endoscopy unit and estimated a cumulative 
footprint of 1501 kg CO2e per 100 procedures, corresponding 
to approximately 15 kg CO2e per endoscopic procedure. The 
analysis included waste generation and energy consumption 
within the endoscopy unit but did not account for patient 
or staff travel, the full life cycle of endoscopes or upstream 
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supply chain emissions, suggesting that the true footprint may 
be even higher [42].

Other major contributors included single-use instruments 
[48, 49, 52], including biopsy forceps, syringes, snares and per-
sonal protective equipment, which accounted for an additional 
13.5% of the footprint [52]. Energy consumption (including heat-
ing and electricity for procedure rooms) [47, 52], sedation-related 
resource use and sterilisation cycles added further impacts [40]. 
Bowel preparation regimens also contribute to upstream phar-
maceutical emissions [40].

Importantly, Desai et al. [42] highlighted that 20% of waste was 
potentially recyclable but improperly discarded, due to systemic 
gaps in waste management. López-Muñoz et  al. [21] demon-
strated that targeted recycling could cut emissions by 27.4% and 
recover over 60% of instrument weight. In this article, single-use 
biopsy forceps alone had a footprint of 0.31–0.47 kg CO2e 21. Jain 
and Agrawal [51] described sustainability initiatives in Indian 
endoscopy units (waste reduction, recycling, energy savings), 
but without quantitative estimates.

Inappropriate procedures were shown to further amplify the en-
vironmental burden. Elli et al. [43] estimated that inappropriate 
upper and lower GI endoscopy procedures in Italy contribute 
over 4000 metric tons of CO2 annually, rising to > 30,000 tons 
at a European scale.

Two high-quality LCAs highlighted the environmental burden of 
single-use devices [48, 49]. Le et al. [48] showed that single-use 
duodenoscopes generate 36.3–71.5 kg CO2e per procedure versus 
1.53 kg for reusable models. Manufacturing and disposal processes 
were the primary drivers of the elevated emissions in single-use 
models [48]. Similarly, Pioche et al. [49] reported 10.9 kg for single-
use gastroscopes versus 4.7 kg for reusables, though the latter in-
creased water use. The study emphasised that the production and 
reprocessing phases are the most environmentally critical stages 
in the life cycle of endoscopic equipment.

Pioche et al. [50], in another study, also assessed capsule endos-
copy, reporting a markedly lower footprint of ~2.5 kg CO2e per 
procedure, underscoring its environmental advantage over con-
ventional endoscopy owing to minimal waste and lack of repro-
cessing needs.

Qualitative reviews reinforced these findings. A recent sys-
tematic review identified only nine full-length studies world-
wide with quantitative estimates, stressing the need for 
standardised LCA reporting [41]. Of these, only three were 
cross-sectional studies providing quantitative estimates. Pohl 
et al. [45] synthesised previously reported estimates (8–28 kg 
CO2e), which fall within the overall range of 7.8–56.4, and 
emphasised sustainability interventions such as reducing un-
necessary procedures and adopting green energy practices. 
Maida et al. [52] positioned GI endoscopy among the top three 
hospital procedures in terms of waste production, estimat-
ing 13,500 tons of plastic waste annually in the United States 
alone, alongside millions of gallons of gasoline-equivalent 
emissions. Additional contributors include reprocessing cy-
cles, energy use for lighting, anaesthesia machines, high-level 
disinfection, and transportation of both staff and patients [52].Fi
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Taken together, these data confirm that GI endoscopy is 
among the most resource-intensive diagnostic procedures in 
IBD, with emissions largely driven by patient travel, single-
use devices and energy use. This underscores the need to 
reassess its routine use for disease monitoring, especially in 
patients with quiescent disease, where non-invasive, lower 
carbon diagnostic alternatives such as IUS may provide com-
parable clinical information while dramatically reducing en-
vironmental harms [41].

3.2.2   |   Cross-Sectional Imaging (CT and MRI)

The carbon footprint and energy consumption of cross-
sectional imaging modalities, particularly CT and MRI, were 
evaluated across 13 studies [5, 10, 45, 53–62], highlighting 
considerable variability and potential areas for emissions re-
duction (Table 2).

Direct LCAs estimate a footprint of 7–10 kg CO2e per abdomi-
nal CT scan [45, 53], while broader estimates derived from in-
stitutional energy-use data and modelling extend up to ~20 kg 
CO2e, depending on utilisation, scan protocols and local energy 
grids. MRI scans are significantly more energy-intensive, rang-
ing from 17–22 kg CO2e per scan in most studies [45, 53, 55] to 
200–300 kg CO2e for high-field 3T systems [56]. Both modalities 
suffer from substantial non-productive energy consumption, 
particularly during standby and idle periods, which offers a crit-
ical area for intervention [57, 61]. Studies consistently highlight 
that power management protocols, equipment shutdown strate-
gies and more stringent imaging justification could dramatically 
reduce the carbon footprint of cross-sectional imaging. The in-
clusion of environmental impact in imaging decision-making is 
increasingly recognised as an essential element of sustainable 
clinical practice [56]. Roletto et  al. [66], through a systematic 
review of LCA studies, emphasised the need for standardised 
methodologies in measuring carbon footprints, reinforcing that 

FIGURE 1    |    PRISMA 2020 flow diagram of study selection process. The figure outlines the systematic search and selection process conducted 
across PubMed, Scopus and Embase databases, resulting in 30 studies included in the final qualitative synthesis. The selection followed PRISMA 
2020 guidelines.
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the environmental burden of CT remains significant across 
healthcare systems.

3.2.2.1   |   Computed Tomography.  Several studies quan-
tified CT-related emissions. Estimates from direct LCAs sug-
gest that a single abdominal CT scan has a carbon footprint 
of between 7 and 10 kg CO2e per procedure [5, 45, 53]. Pohl 
et al. [45] reported ~7 kg CO2e per scan, while McAlister et al. 
[53] found ~9.2 kg CO2e in a prospective Australian LCA. 
Merkle et  al. [5] provided comprehensive energy assessments 
in urological practice, reporting that CT scanners consumed 
20,000–35,000 kWh annually, corresponding to approximately 
6000–10,500 kg CO2e per scanner per year. Institutional energy 
consumption studies indicate that CT scanners may generate 
broader per-scan emissions that can rise by 30%, reaching up to 
~20 kg CO2e per scan, depending on throughput, scan parame-
ters and local energy mix [54].

Standby energy consumption emerged as a modifiable contrib-
utor. Heye et al. [10] showed that shutdown protocols substan-
tially reduce unnecessary consumption, while Bastian et al. [58] 
demonstrated that switching dual-energy CT scanners from idle 
to off mode could prevent up to 5868 kg CO2e per scanner each 
year. Also Vosshenrich et al. [57] confirmed that over 90% of en-
ergy consumption in interventional imaging systems, including 
CT, occurs during non-productive periods, highlighting the im-
portance of effective power management strategies. At a system 
level, Furlan et al. [59] estimated that reducing unwarranted CT 
and MRI across G20 countries could prevent up to 175,120 tons 
of CO2e per year. While these estimates are not specific to IBD 
monitoring, they underscore the potentially large-scale environ-
mental benefits of avoiding unnecessary imaging.

Importantly, Kouropoulos [54] projected that, without interven-
tion, carbon emissions from CT and MRI combined would in-
crease by approximately 30% globally between 2018 and 2030.

3.2.2.2   |   Magnetic Resonance Imaging.  MRI was consis-
tently identified as the most energy-intensive and carbon-heavy 
imaging modality. Unlike CT, MRI does not involve ionising 
radiation but requires continuous cryogenic cooling, resulting 
in a baseline energy burden independent of patient throughput 
[60]. The carbon footprint of a single MRI scan varies consider-
ably, ranging from 17 to 22 kg CO2e per scan, depending on field 
strength, protocol duration and life cycle boundaries [10, 53, 55, 
61], up to 200–300 kg for high-field 3T systems [56]. McAlister 
et al. [53] estimated an average carbon footprint of 17.5 kg CO2e 
per MRI scan, while Pohl et al. [45] reported a slightly higher 
estimate of 20 kg CO2e per scan. Esmaeili et al. [55] provided a 
detailed LCA, estimating a per-patient carbon footprint of 22.4 kg 
CO2e, with substantial contributions from out-of-hospital elec-
tricity generation and consumable production. Energy con-
sumption data presented by Merkle et  al. [5] indicated that 
MRI systems used in urology can consume between 80,000 
and 170,000 kWh/year, resulting in annual carbon emissions 
ranging from approximately 24,000 to 51,000 kg CO2e per scan-
ner. Picano [56] provided one of the highest emission estimates, 
reporting that a single 3 Tesla MRI scan may generate between 
200 and 300 kg CO2e per procedure. The study also estimated 
that MRI and CT combined accounted for 0.77% of global CO2e 
in 2016, emphasising the critical need to include environmental Fi
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sustainability considerations in the clinical decision-making 
process for imaging modalities.

Operational interventions can yield meaningful reductions. 
Woolen et al. [61] demonstrated that implementing power man-
agement strategies, such as switching MRI units to power-save 
mode during off-hours, can reduce annual emissions by 8.7–14.9 
metric tons of CO2 per scanner. Vosshenrich et al. [57] similarly 
highlighted that non-productive energy use dominates MRI op-
erational footprints, accounting for over 90% of total energy con-
sumption, which could be mitigated by powering off systems 
when not in use. Kouropoulos [54] emphasised the expected esca-
lation in carbon emissions from MRI operations if global imaging 
demand continues to rise without sustainability interventions.

3.2.2.3   |   Indirect Emissions.  Beyond direct scanning, 
indirect emissions substantially add to the footprint of CT 
and MRI. These include equipment production, transportation, 
installation, maintenance and contrast media manufacturing 
[5, 60, 65]. Both modalities also rely on energy-intensive insti-
tutional infrastructure, including dedicated imaging suites, 
ventilation and cooling systems, extensive digital data storage 
and routine maintenance services [10, 61]. CT-specific contribu-
tors include high-power X-ray generation, equipment manufac-
turing, infrastructure energy consumption and long-term digital 
storage requirements [61]. MRI requires continuous 24/7 energy 
input to maintain cryogenic cooling, creating a significant base-
line energy burden independent of patient throughput [10, 56, 
60]. Indirect emissions, often underestimated, were consistently 
identified as a major component of cross-sectional imaging's 
environmental impact. Non-productive energy use is a domi-
nant source of emissions. Idle and standby consumption account 
for > 90% of total energy use in many CT and MRI systems [57, 
58]. Esmaeili et al. [60] emphasised that in-hospital idle energy 
consumption can exceed the energy used for image acquisition 
by a factor of 14–30 times, making it a critical area for carbon 
reduction. In subsequent work, Esmaeili et  al. [55] quantified 
the life cycle impact of MRI procedures, estimating a per-patient 
carbon footprint of 22.4 kg CO2e, with significant out-of-hospital 
contributions from electricity generation and consumable pro-
duction. Woolen et  al. [61] demonstrated that substantial CO2 
savings can be achieved by simple operational changes, such as 
implementing overnight shutdown protocols for MRI systems, 
saving 8.7–14.9 tons CO2 per scanner annually. Similarly, Merkle 
et al. [5] and Vosshenrich et al. [57] emphasised that optimising 
equipment utilisation efficiency, not just procedure volume, is 
essential for carbon mitigation.

In addition to equipment and facility-related emissions, the 
long-term storage of medical imaging data represents an emerg-
ing contributor to the ecological cost of diagnostic imaging. The 
expansion of Picture Archiving and Communication Systems 
(PACS) and the reliance on energy-intensive data centres require 
continuous electricity for cooling and maintenance, thereby 
contributing significantly to GHG emissions [62].

Contrast media are another contributor: iodinated agents (CT) 
and gadolinium-based agents (MRI) entail environmental costs 
from production and disposal, with gadolinium persistence doc-
umented in wastewater and ecosystems [67, 68]. Additionally, 
transportation of patients and staff, due to the centralisation of 

imaging services, can account for a substantial proportion of 
total emissions. All these indirect emissions may account for over 
60% of the total carbon footprint of imaging procedures [55].

Finally, predictive global modelling suggests that the carbon emis-
sions from CT and MRI are expected to rise sharply due to increas-
ing imaging demand worldwide, with indirect emissions from 
manufacturing, facility infrastructure and maintenance projected 
to make up a growing share of the total environmental impact [54].

3.2.3   |   Intestinal Ultrasound

Ultrasound consistently emerged as the imaging modality 
with the lowest carbon footprint across all studies included 
[5, 34, 45, 53, 63–65] (Table  3). It was broadly recognised for 
its minimal energy requirements, negligible embedded carbon 
costs and absence of resource-intensive contrast agents or spe-
cialised infrastructure.

Three studies specifically addressed IUS and point-of-care 
ultrasound (POCUS) in the management of IBD [34, 63, 64]. 
Nwaezeigwe et al. [34] conducted a retrospective audit and es-
timated that IUS produced ~1 kg CO2e per scan, with the sub-
stitution of cross-sectional imaging leading to a total saving of 
3269 kg CO2e over 1 year. This reduction was largely attributed to 
its bedside applicability, rapid execution and avoidance of refer-
rals for CT, MRI, contrast agents and repeated patient transpor-
tation. Dolinger and Kayal [63, 64] further emphasised, in expert 
review/commentaries, that IUS represents a low-emission, clin-
ically effective imaging option, particularly suitable for disease 
monitoring and treatment assessment in paediatric IBD. Both 
studies underscored that IUS combines environmental sustain-
ability with clinical efficiency by minimising the number of 
high-emission diagnostic procedures required per patient.

Martin et al. [65] compared abdominal US (not specifically IUS) 
with CT and MRI in abdominal imaging, demonstrating that US 
had the lowest energy consumption and GHG among the three 
modalities. The study confirmed that US offers a dramatically 
reduced environmental impact compared to CT and MRI, with-
out compromising diagnostic performance for many indications.

Quantitative estimates confirmed the low-carbon footprint of 
US-based modalities. McAlister et al. [53] reported an average 
emission of 0.5–1.5 kg CO2e per scan in a prospective LCA, while 
Pohl et  al. and Nwaezeigwe et  al. provided a closely aligned 
estimate of approximately 1 kg CO2e per procedure [34, 45]. 
Merkle et  al. [5] reported an annual energy consumption for 
US machines at < 2000 kWh, corresponding to ~600–740 kg 
CO2e per year per scanner, the lowest among diagnostic imag-
ing modalities. Importantly, Merkle et  al. [5] emphasised that 
further emission reductions could be achieved by powering off 
US equipment during periods of non-use, suggesting that minor 
operational changes could improve sustainability even further.

4   |   Discussion

The rising burden of IBD presents not only clinical but also envi-
ronmental challenges for healthcare systems [69–72]. As chronic 
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diseases like IBD increasingly dominate healthcare resource 
utilisation [9], the cumulative carbon footprint of diagnostic and 
therapeutic pathways has become a significant, though histori-
cally under-recognised, contributor to healthcare-related GHG 
emissions [6, 73].

This systematic review demonstrates that GI endoscopy, CT and 
MRI, while essential for IBD care, are among the most resource-
intensive diagnostic modalities, with substantial carbon foot-
prints [21, 40, 42, 62, 65], whereas IUS represents a significantly 
lower carbon, patient-centred and clinically validated alterna-
tive for disease monitoring [5, 34, 45, 53, 63–65].

Colonoscopy continues to be a cornerstone in the management 
of IBD, enabling direct mucosal visualisation, histologic sam-
pling, mucosal healing assessment and colorectal cancer surveil-
lance [74–79], with its role strongly supported by international 
guidelines [78, 80]. However, it is also one of the most resource-
intensive diagnostic procedures in IBD [21], generating an esti-
mated 7.8–56.4 kg CO2-equivalent per procedure [6, 21, 41–43, 
52], with the majority of emissions stemming from patient trans-
portation, disposable equipment use and facility-related energy 
consumption [21]. Additionally, GI endoscopy units produce 
significant amounts of solid and liquid waste per procedure, and 
substantial energy consumption, with large volumes of recyclable 
materials often discarded [42]. Sedation practices also influence 
the carbon footprint of endoscopy. Rughwani et al. [44] noted that 
anaesthesia choice contributes to variability in emissions, with 
higher impacts in settings using general anaesthesia compared 
with procedural sedation, although most studies did not stratify 
results by anaesthesia type, limiting comparability across health-
care systems. Future research should report such stratified data 
to allow more precise comparisons across healthcare systems.

Calls for system-level change are emerging. Several authors have 
advocated for the urgent incorporation of planetary health prin-
ciples into endoscopy practice and training [81–83], and others 
have proposed practical strategies to reduce the carbon footprint 
of endoscopy, including leaner inventory management, telecon-
sultation pathways and decarbonised sterilisation systems [82].

Cross-sectional imaging, particularly CT and MRI, also plays a 
pivotal role in IBD [14, 30, 53, 55, 58, 59, 61], particularly for 
the assessment of transmural disease [30, 84], strictures, fistulae 
[6, 73] and abscesses in CD [30, 85–89]. MRI has become the 
preferred modality for longitudinal monitoring, particularly in 
younger patients, due to its superior soft-tissue resolution and 
lack of ionising radiation [12, 16, 18]. However, both CT and 
MRI remain energy-intensive procedures with substantial car-
bon footprints [53, 62].

Based on the reviewed studies, CT scans typically generate 
7–10 kg CO2e per examination in direct LCAs [53, 60], even 
reaching ~20 kg per scan in broader modelling and institutional 
energy-use studies, depending on utilisation, imaging protocols 
and electricity sources. Indeed, Merkle et al. [5] estimated an-
nual CT scanner energy use in urological practice at 20,000–
35,000 kWh/year (~6000–10,500 kg CO2e/year) corresponding 
to ~12–21 kg CO2e per scan if ~500 scans are performed annu-
ally. Similarly, Kouropoulos [54] projected a 30% increase in CT-
related emissions by 2030 under current trends. Together, these 

findings underscore the contrast between the relatively modest 
per-scan footprint reported in controlled LCAs and the larger 
system-level impact observed in real-world practice.

MRI generates between 17 and 78 kg CO2-equivalent per scan, 
and even more, depending on scanner type, imaging protocol and 
energy sources [53, 60]. While MRI avoids radiation and modern 
scanners and faster imaging protocols have improved energy ef-
ficiency, it presents an even greater environmental challenge due 
to its high energy demand, particularly for continuous cooling, 
which generates emissions even when the scanner is idle [10, 61].

The carbon footprint of CT and MRI in chronic disease monitor-
ing is still under-quantified and variably reported. Roletto et al. 
[20] proposed a comprehensive LCA framework to standardise 
sustainability assessments in diagnostic imaging, and McGinnis 
et al. [90] emphasised the critical importance of adopting LCA 
methods in clinical imaging workflows. Nonetheless, these im-
aging pathways represent a substantial, albeit still inadequately 
measured, contribution to the carbon footprint of chronic IBD 
care [6, 73], and their cumulative environmental burden war-
rants consideration, given the need for repeated imaging over 
many years in this patient population [84].

In this landscape, IUS offers a compelling, low carbon and 
patient-centred alternative for many diagnostic and monitor-
ing needs in IBD. With a per-examination carbon footprint 
estimated at 0.5–1.5 kg CO2-equivalent [34, 53, 65], orders of 
magnitude lower than GI endoscopy, CT or MRI [34, 53], IUS 
significantly reduces the environmental impact of IBD care 
(Figure  2). Unlike cross-sectional imaging, IUS requires min-
imal energy, generates negligible waste [67, 68, 91, 92], typ-
ically limited to ultrasound gel and gloves [61, 92, 93], and 
does not rely on radiation, contrast agents or energy-intensive 
infrastructure  [67, 68, 91, 92]. Its portability and point-of-care 
availability further minimise patient travel, a major emission 
source identified for GI endoscopy [22, 64, 91, 94–96] (Figure 3). 
Clinically, IUS enables real-time decision-making and sup-
ports tight disease control, allowing rapid therapeutic adjust-
ments, without the scheduling delays often associated with 
endoscopy or radiology [28, 30, 64, 91, 95, 97, 98]. In parallel 
with these sustainability benefits, IUS has also gained strong 
clinical validation and is increasingly recognised worldwide 
for its ability to provide real-time assessment of transmural in-
flammation [29, 31, 35, 63, 64, 99–102], bowel wall thickness 
[22, 26, 35, 103–108], vascularity [22, 26, 35, 103–105], strictures 
[24, 84], pre-stenotic dilatation [84], fistulae [109, 110] and intra-
abdominal abscesses [22, 109]. In both CD and UC, multiple pro-
spective studies [25, 27, 85, 94, 98, 99, 110–116] and systematic 
reviews/meta-analyses [31–33, 84, 109, 117–120] have demon-
strated its excellent sensitivity and specificity for detecting active 
inflammation, monitoring therapeutic response, and identifying 
disease complications. Importantly, IUS has proven comparable 
to magnetic resonance enterography (MRE) in several clinical 
scenarios, especially for the monitoring of small bowel disease 
activity and treatment response [22, 25, 84, 110, 113]. IUS is also 
minimally invasive, well-tolerated by patients, and can be per-
formed at the point of care [36, 63, 94–96, 116, 121]. Therefore, 
IUS facilitates decentralised diagnostic models that improve ac-
cess across both high- and low-resource settings [97]. Together, 
these features position IUS as a clinically effective solution that 
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could reshape chronic disease monitoring [122]. Despite these 
advantages, limitations remain. Operator dependence is often 
cited as a limitation. However, this is being addressed through 

standardised training programmes and international educa-
tional initiatives that have demonstrated reproducible learning 
curves [112] and high inter-observer agreement among trained 

FIGURE 2    |    Carbon footprint of diagnostic modalities used in inflammatory bowel disease (IBD) management. Estimates are shown as ranges 
derived from life cycle assessments (LCAs) and broader institutional or modelling studies. Ultrasound demonstrates the lowest footprint (0.5–1.5 kg 
CO2e), followed by CT (7–10 kg CO2e per scan in LCAs, up to ~20 in institutional data), gastrointestinal endoscopy (7.8–56.4 kg CO2e) and MRI, which 
shows the widest variability (17–300 kg CO2e).

FIGURE 3    |    Environmental impact points across diagnostic tools in inflammatory bowel disease (IBD). The figure summarises pre-, intra- 
and post-procedure contributors to carbon emissions and resource use for endoscopy, cross-sectional imaging (CT and MRI) and ultrasound (US). 
Endoscopy and cross-sectional imaging are associated with substantial travel, energy consumption, disposables and waste management, whereas US 
demonstrates minimal energy use, negligible disposables and reduced ancillary infrastructure needs.
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clinicians [123]. Expanding access to formal IUS training thus 
represents a feasible and actionable strategy to promote both 
clinical excellence and diagnostic sustainability, making its 
wider adoption both feasible and clinically safe [122–124].

Additionally, IUS remains underutilised, particularly outside 
Europe [122]. This underuse reflects a combination of historical 
practice patterns, limited training availability [125], and insuffi-
cient integration into diagnostic algorithms and reimbursement 
frameworks [126]. To fully realise the potential of IUS, future 
efforts should prioritise its inclusion in gastroenterology train-
ing programmes, revise clinical guidelines to incorporate sus-
tainability considerations, and adapt reimbursement policies to 
support low-carbon care pathways [34, 127].

It is also important to recognise that in clinical practice, IUS 
is often used in combination with faecal calprotectin or other 
laboratory biomarkers [128–130], and in some cases, abnormal 
results on IUS or biomarkers may lead to an earlier endoscopic 
reassessment. These additional steps carry their own environ-
mental costs, which were not quantified in this review. Likewise, 
scaling up IUS availability will require training programmes 
and acquisition of new equipment, introducing an initial carbon 
cost, though this is likely outweighed by long-term benefits com-
pared with more resource-intensive imaging modalities.

One of the strengths of this study is that it represents the first 
systematic review to comprehensively evaluate the environ-
mental impact of diagnostic imaging used in IBD management, 
encompassing GI endoscopy/colonoscopy, CT, MRI and IUS. 
This review synthesises both quantitative and qualitative data, 
enabling direct comparison of carbon footprints across these 
different diagnostic modalities. Compared to previous sustain-
ability research in endoscopy and diagnostic imaging, this re-
view offers a more disease-specific analysis, focusing on chronic 
care pathways like IBD. Previous studies have acknowledged 
the environmental burden of diagnostic imaging, but often 
lacked detailed carbon quantification or did not explore disease-
specific impacts over time. Our findings align with existing es-
timates of emissions per procedure but uniquely highlight the 
potential of IUS as a low-carbon, scalable alternative.

While this study offers novel insights, it is important to acknowl-
edge its limitations. The included studies exhibit considerable 
heterogeneity in LCA methodologies and reporting standards, 
which may affect comparability. Roletto et  al. [20] proposed a 
comprehensive LCA framework to standardise sustainability as-
sessments in diagnostic imaging, and McGinnis et al. [90] empha-
sised the critical importance of adopting LCA methods in clinical 
imaging workflows. Further research is needed to conduct stan-
dardised, multicentre LCA across diverse healthcare settings to 
more accurately quantify the carbon impact of diagnostic path-
ways [20, 66]. Data on indirect emissions, such as those associated 
with patient transportation and equipment standby energy con-
sumption, were inconsistently reported. There is also a need to 
evaluate the cumulative carbon footprint of IBD diagnostics over 
the full course of the disease. Additionally, most studies were con-
ducted in Europe and North America, with only one Indian study, 
potentially limiting generalisability to low-resource settings. 
Longitudinal, real-world data on the cumulative carbon footprint 
over the full diagnostic journey of IBD patients remain limited.

Finally, an additional future consideration is the impact of artificial 
intelligence (AI) on the carbon footprint of diagnostic imaging. On 
one hand, AI-based image analysis could enhance efficiency by 
reducing the need for repeat or unnecessary examinations, thus 
potentially lowering overall emissions. On the other hand, the 
training and deployment of large AI models are themselves energy-
intensive processes that contribute significantly to greenhouse gas 
emissions, particularly when relying on cloud-based data centres. 
The net environmental impact of AI in diagnostic imaging will 
therefore depend on the balance between these opposing forces, 
and warrants systematic evaluation in future research [131].

The experience in IBD with IUS offers a clear example of how 
healthcare can pursue low-carbon precision medicine without 
sacrificing diagnostic accuracy. Wider adoption of IUS would 
represent a pragmatic step towards decarbonising chronic disease 
management while preserving high-quality care [132] and align-
ing healthcare delivery with planetary health objectives [1–4].

In the context of escalating climate concerns, re-evaluating di-
agnostic pathways through the lens of planetary health is no lon-
ger optional but necessary [36, 133, 134].
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