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ABSTRACT

Background: Inflammatory bowel disease (IBD) is a chronic, resource-intensive condition requiring repeated diagnostic as-
sessments. Healthcare contributes ~5% of global greenhouse gas emissions, and key diagnostic tools in IBD—gastrointestinal
(GI) endoscopy, computed tomography (CT) and magnetic resonance imaging (MRI)—are associated with substantial environ-
mental impacts. The environmental burden of these diagnostic pathways, however, remains underappreciated.

Aim: To systematically assess the carbon footprint and environmental impact of diagnostic imaging modalities commonly used
in IBD, with particular focus on intestinal ultrasound (IUS) as a sustainable, low-carbon alternative.

Methods: A systematic review was conducted according to PRISMA 2020 guidelines. PubMed, Scopus and Embase were
searched from inception to May 2025 for studies reporting the environmental impact of diagnostic modalities relevant to IBD
care (GI endoscopy, CT, MRI and IUS). Studies providing quantitative or qualitative data on carbon footprint, energy consump-
tion, waste generation or sustainability metrics were included. Data were synthesised narratively.

Results: Thirty-one studies were included. GI endoscopy generates approximately 7.8-56.4kg CO,-equivalent per procedure,
largely driven by transportation, energy use and disposables. CT carries a carbon footprint of 7-10kg CO e per procedure in direct
life cycle assessments, while broader institutional and modelling estimates extend this to ~20kg CO,e depending on throughput,
protocol and energy sources. MRI is substantially more energy-intensive, ranging from 17-22kg CO,e per scan in most studies,
and up to 200-300kg CO,e for high-field (3T) systems when full life cycle impacts are included. In contrast, IUS produces only
0.5-1.5kg CO,e per scan, with minimal energy demand and negligible waste. IUS enables point-of-care assessments, reducing
patient travel and associated emissions.

Conclusion: GI endoscopy, CT and MRI are indispensable in IBD care but carry considerable environmental costs. The broader
adoption of TUS offers a clinically effective, low-carbon alternative that can contribute to more sustainable IBD management,
aligning with planetary health goals.

Trial Registration: PROSPERO International Prospective Register of Systematic Reviews: CRD420251088016

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any
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1 | Introduction

The management of inflammatory bowel disease (IBD) presents
a significant challenge, requiring long-term, resource-intensive
care. Globally, healthcare contributes ~5% of greenhouse gas
(GHG) emissions, underscoring its role as both a provider of
health and a driver of environmental harm [1-5]. IBD, encom-
passing Crohn's disease (CD) and ulcerative colitis (UC), is a
lifelong condition that demands repeated diagnostic assess-
ments for disease monitoring, treatment decisions and cancer
surveillance [6-8], exemplifying the carbon-intensive nature of
modern healthcare [6, 9].

Colonoscopy and gastrointestinal (GI) endoscopy, computed
tomography (CT) and magnetic resonance imaging (MRI)
are cornerstones of IBD management, but are also among
the most resource-intensive diagnostic tools [6, 7, 10]. These
procedures, while clinically indispensable in many scenarios
[11, 12], contribute substantially to healthcare-related CO,
emissions (CO,e) [12-16] through high energy consumption,
widespread use of single-use devices, complex sterilisation
processes, and travel by patients and healthcare providers
[10, 13, 17-21].

In contrast, intestinal ultrasound (IUS) has emerged as a non-
invasive, radiation-free, point-of-care imaging modality offering
excellent diagnostic accuracy in IBD [22-30], supporting both
disease diagnosis and longitudinal monitoring [30-33]. Unlike
cross-sectional imaging, IUS offers clinical benefits with a min-
imal environmental footprint [34, 35], generating negligible
waste and reducing travel-related emissions by often being per-
formed at the bedside [34, 36].

Given the dual pressures of providing high-quality care and re-
ducing healthcare's environmental impact, it is essential to eval-
uate the sustainability of diagnostic pathways alongside their
clinical efficacy. The present systematic review aims to compre-
hensively assess the carbon footprint and environmental impact
of key imaging modalities used in IBD management, focusing
particularly on the potential of IUS as a sustainable, low-carbon
alternative that can align clinical excellence with planetary
health goals.

2 | Methods

This systematic review was conducted following the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) 2020 guidelines. A comprehensive literature
search was performed in PubMed, Scopus and Embase data-
bases from inception to May 2025. The search strategy com-
bined keywords and MeSH terms related to IBD, diagnostic
imaging modalities commonly used in IBD (colonoscopy/GI
endoscopy, CT, MRI, IUS) and environmental impact (carbon
footprint, life cycle assessment, sustainability, energy con-
sumption, resource use). The detailed search strategy is pro-
vided in Appendices S1 and S2. The search was supplemented
by manual screening of reference lists and relevant policy re-
ports related to healthcare sustainability and climate-health
frameworks.

2.1 | Eligibility Criteria

We included peer-reviewed articles and reports providing quan-
titative or qualitative data on the environmental impact of diag-
nostic imaging relevant to IBD care. Since only a limited number
of studies were conducted directly in IBD populations, we also in-
cluded studies assessing these modalities in broader gastrointes-
tinal or cross-sectional imaging contexts, provided they reported
outcomes applicable to IBD diagnostics. Eligible study designs
were life cycle assessments (LCAS), prospective or retrospective
audits, observational studies, conference abstracts with available
new data, qualitative sustainability reports, and systematic and
narrative reviews, which were included to retrieve additional rel-
evant studies and references not identified in the primary search.

We excluded editorials, letters, conference abstracts without full
data, non-peer-reviewed sources, papers lacking consistent or
extractable data and studies focused solely on therapeutic inter-
ventions. No restrictions were applied regarding language, pub-
lication date or geographic location.

2.2 | Study Selection

All retrieved articles were exported and screened using
Rayyan.ai, a web-based platform for systematic review manage-
ment. Duplicates were automatically identified and removed.
Two independent reviewers (S.M. and A.Z., blinded to each
other's decisions) screened titles and abstracts for eligibility.
Discrepancies were resolved through discussion or consultation
with a third reviewer (S.D.).

2.3 | Data Extraction

Data were extracted independently by two reviewers (S.M. and
A.Z.) using a standardised form, including: first author, year of
publication, diagnostic modality assessed, environmental met-
ric reported (e.g., kg CO,e per procedure), methodological ap-
proach (e.g., LCA) and key findings related to environmental
impact. Outcomes of interest were carbon footprint per proce-
dure (kg CO,e), energy consumption (kWh), waste generation
(solid and liquid), transport-related emissions and any reported
sustainability interventions.

2.4 | Quality Assessment

The methodological quality and risk of bias (RoB) of the included
studies were assessed using tools adapted for environmental health
research and study design. LCA studies were evaluated against
ISO 14040/14044 standards, with particular attention to system
boundaries, functional units and completeness of reported impact
categories [37]. Observational audit studies (prospective or retro-
spective) were assessed using the Joanna Briggs Institute (JBI) crit-
ical appraisal checklists for prevalence and cross-sectional studies
[38]. Narrative reviews, commentaries and descriptive reports
were not formally appraised for risk of bias, but their transparency
and reporting were qualitatively considered concerning criteria
from the CASP qualitative appraisal tool [38, 39].
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2.5 | Data Synthesis

Studies were grouped by diagnostic modality and summarised
in structured tables. Where appropriate, findings were also pre-
sented in visual summaries. Data were synthesised narratively.
Study-level RoB judgements, assessed as previously described,
are summarised in the ‘Risk of bias’ column of Tables 1-3.

3 | Results
3.1 | Study Selection

The initial literature search across Embase, Scopus and PubMed
yielded a total of 169 records. After the removal of 10 duplicates,
159 records underwent title and abstract screening. Based on
predefined inclusion criteria targeting the environmental im-
pact of diagnostic imaging and endoscopic pathways in IBD, 76
articles were selected for full-text evaluation. Additionally, one
relevant study was manually retrieved from a conference report
and included in the final synthesis [34]. Following a detailed
assessment, 31 studies met the eligibility criteria and were in-
cluded in the final qualitative synthesis. The study selection pro-
cess is depicted in the PRISMA 2020 flow diagram (Figure 1).

The included studies focused on the environmental impact of
three main diagnostic modalities used in IBD management:
(1) gastrointestinal (GI) endoscopy/colonoscopy, (2) cross-
sectional imaging (CT and MRI) and (3) ultrasound (US)-based
modalities.

3.2 | Study Characteristics

Among the 31 included studies, 14 focused on the environmen-
tal impact of GI endoscopy [21, 40-52], 13 on cross-sectional
imaging modalities (CT, MRI) [5, 10, 45, 53-62] and 7 on US
[5, 34, 45, 53, 63-65]. Notably, three studies [5, 45, 53] contrib-
uted data to more than one diagnostic modality category (CT,
MRI and US). The studies originated from a wide range of coun-
tries, reflecting broad international interest in sustainable gas-
troenterological care (see Tables 1-3). Most studies evaluated
carbon dioxide equivalents (CO,-eq), solid and liquid waste
production, energy use (kWh) and water consumption, with
some also reporting indirect emissions related to transportation,
infrastructure and equipment sterilisation. Most included stud-
ies on endoscopy, CT and MRI reported data at the modality or
departmental level (gastrointestinal endoscopy units or radiol-
ogy departments) rather than exclusively in IBD-specific co-
horts. By contrast, IUS studies were more disease-specific, with
three studies evaluating IUS in IBD-specific cohorts [34, 63, 64].
LCA studies generally adhered to ISO 14040/14044 guidelines.
However, the completeness of system boundaries and transpar-
ency of data sources varied across studies. Approximately 60%
of LCA studies provided full inventory data and explicit alloca-
tion assumptions, while the remaining studies lacked detailed
reporting on indirect emissions and waste management phases,
indicating a moderate RoB. Observational and audit studies were
of variable quality, with most studies providing relevant data,
but several failed to comprehensively report key sustainability
metrics, introducing potential underreporting bias. Narrative

and scoping reviews included in the analysis were used primar-
ily to retrieve additional references and did not directly contrib-
ute quantitative data.

3.2.1 | GI Endoscopy

Fourteen studies specifically assessed the environmental foot-
print of GI endoscopic procedures, focusing on carbon emis-
sions, waste generation, energy consumption and sustainability
interventions [21, 40-52] (Table 1).

Among the included studies, five employed formal LCAs
[21, 40, 48-50], judged at low RoB due to transparent methodol-
ogy and standardised reporting. Observational audits by Desai
et al. [42], Rughwani et al. [44], Lacroute et al. [46] and Henniger
et al. [47] were generally at moderate RoB, with strengths in
real-world data but limitations in scope and generalisability.
Elli et al. [43] used a modelling approach based on national
datasets, also at moderate RoB, given reliance on assumptions.
Four studies were reviews, commentaries or descriptive reports
[41, 45, 51, 52], carrying a high RoB as they relied mainly on
reported secondary data.

Across studies, GI endoscopy consistently emerged as a signif-
icant contributor to healthcare-related carbon emissions and
resource consumption, with reported carbon footprints ranging
from 7.8 to 56.4kg CO,e per procedure, depending on methodol-
ogy and inclusion of patient travel [21, 40, 42-44, 46-50].

Liammer et al. [40], using a comprehensive LCA in a Dutch uni-
versity hospital, reported the highest emissions values, with a
footprint of 56.4kg CO,e per colonoscopy, of which 76.5% was
attributable to the transportation of patients and staff and 13.5%
to disposables. Also, in other studies [40, 44, 46, 52], the main
emission sources included patient and staff travel, energy con-
sumption (including heating and electricity for procedure rooms)
[47, 52] and single-use instruments [48, 49, 52]. In a prospective
UK study, the carbon footprint per GI endoscopy was 38.5kg
CO,-equivalent, which decreased to 6.5kg CO,e when patient
travel was excluded. Travel alone may account for 83% of emis-
sions, while electricity, medical gases and water contributed less
substantially [44]. Similarly, Lacroute et al. [46] reported that
ambulatory GI endoscopy procedures were associated with an
average carbon footprint of 28.4kg CO,e, with major emission
sources including patient and staff travel (45%), medical equip-
ment use (32%) and energy consumption (12%).

Henniger et al. [47] reported a low annual carbon footprint
of 62.7tons CO,e for a high-volume German endoscopy unit,
corresponding to ~7.8kg CO,e per procedure, with heating
and the use of consumables identified as the largest contrib-
utors. Their analysis excluded patient and staff travel, as well
as capital goods such as endoscopes and washing machines
[47]. Additionally, Desai et al. [42] conducted a prospective
audit in a tertiary endoscopy unit and estimated a cumulative
footprint of 1501kg CO,e per 100 procedures, corresponding
to approximately 15kg CO,e per endoscopic procedure. The
analysis included waste generation and energy consumption
within the endoscopy unit but did not account for patient
or staff travel, the full life cycle of endoscopes or upstream
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| (Continued)

TABLE 1

Country/

Risk of bias

Key findings

Environmental metric

Diagnostic modality Study design

Region

Year

First author

Low

Single-use ~2.5% higher; reusable
had higher water consumption

10.9kg CO,e (single-use)

Comparative
LCA (single-use

GI endoscopy (EGD)

France

2024

Pioche et al. [49]

vs. 4.7kg (reusable)

vs. reusable)

Low

Capsule endoscopy has a much

~2.5kg CO,e/procedure

Capsule endoscopy LCA

France

2024

Pioche et al. [50]

lower footprint than conventional
endoscopy, with minimal waste

High

Local sustainability

Descriptive report Qualitative (no

GI endoscopy (mixed
endoscopic procedures)

India

2023

Jain and Agrawal [51]

initiatives in India

numeric data)

High

Major sources: energy-intensive
equipment, single-use devices,
travel; emphasised green practices

Narrative synthesis

GI endoscopy (mixed Systematic review

endoscopic procedures)

Italy

2024

Maida et al. [52]

Abbreviations: EGD, oesophagogastroduodenoscopy; ERCP, endoscopic retrograde cholangiopancreatography; LCA, life cycle assessment.

supply chain emissions, suggesting that the true footprint may
be even higher [42].

Other major contributors included single-use instruments
[48, 49, 52], including biopsy forceps, syringes, snares and per-
sonal protective equipment, which accounted for an additional
13.5% of the footprint [52]. Energy consumption (including heat-
ing and electricity for procedure rooms) [47, 52], sedation-related
resource use and sterilisation cycles added further impacts [40].
Bowel preparation regimens also contribute to upstream phar-
maceutical emissions [40].

Importantly, Desai et al. [42] highlighted that 20% of waste was
potentially recyclable but improperly discarded, due to systemic
gaps in waste management. Lopez-Mufoz et al. [21] demon-
strated that targeted recycling could cut emissions by 27.4% and
recover over 60% of instrument weight. In this article, single-use
biopsy forceps alone had a footprint of 0.31-0.47 kg CO,e 21. Jain
and Agrawal [51] described sustainability initiatives in Indian
endoscopy units (waste reduction, recycling, energy savings),
but without quantitative estimates.

Inappropriate procedures were shown to further amplify the en-
vironmental burden. Elli et al. [43] estimated that inappropriate
upper and lower GI endoscopy procedures in Italy contribute
over 4000 metric tons of CO, annually, rising to > 30,000 tons
at a European scale.

Two high-quality LCAs highlighted the environmental burden of
single-use devices [48, 49]. Le et al. [48] showed that single-use
duodenoscopes generate 36.3-71.5kgCO,e per procedure versus
1.53kg for reusable models. Manufacturing and disposal processes
were the primary drivers of the elevated emissions in single-use
models [48]. Similarly, Pioche et al. [49] reported 10.9kg for single-
use gastroscopes versus 4.7kg for reusables, though the latter in-
creased water use. The study emphasised that the production and
reprocessing phases are the most environmentally critical stages
in the life cycle of endoscopic equipment.

Pioche et al. [50], in another study, also assessed capsule endos-
copy, reporting a markedly lower footprint of ~2.5kg CO,e per
procedure, underscoring its environmental advantage over con-
ventional endoscopy owing to minimal waste and lack of repro-
cessing needs.

Qualitative reviews reinforced these findings. A recent sys-
tematic review identified only nine full-length studies world-
wide with quantitative estimates, stressing the need for
standardised LCA reporting [41]. Of these, only three were
cross-sectional studies providing quantitative estimates. Pohl
et al. [45] synthesised previously reported estimates (8-28 kg
CO,e), which fall within the overall range of 7.8-56.4, and
emphasised sustainability interventions such as reducing un-
necessary procedures and adopting green energy practices.
Maida et al. [52] positioned GI endoscopy among the top three
hospital procedures in terms of waste production, estimat-
ing 13,500 tons of plastic waste annually in the United States
alone, alongside millions of gallons of gasoline-equivalent
emissions. Additional contributors include reprocessing cy-
cles, energy use for lighting, anaesthesia machines, high-level
disinfection, and transportation of both staff and patients [52].
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FIGURE1 | PRISMA 2020 flow diagram of study selection process. The figure outlines the systematic search and selection process conducted
across PubMed, Scopus and Embase databases, resulting in 30 studies included in the final qualitative synthesis. The selection followed PRISMA

2020 guidelines.

Taken together, these data confirm that GI endoscopy is
among the most resource-intensive diagnostic procedures in
IBD, with emissions largely driven by patient travel, single-
use devices and energy use. This underscores the need to
reassess its routine use for disease monitoring, especially in
patients with quiescent disease, where non-invasive, lower
carbon diagnostic alternatives such as IUS may provide com-
parable clinical information while dramatically reducing en-
vironmental harms [41].

3.2.2 | Cross-Sectional Imaging (CT and MRI)

The carbon footprint and energy consumption of cross-
sectional imaging modalities, particularly CT and MRI, were
evaluated across 13 studies [5, 10, 45, 53-62], highlighting
considerable variability and potential areas for emissions re-
duction (Table 2).

Direct LCAs estimate a footprint of 7-10kg CO,e per abdomi-
nal CT scan [45, 53], while broader estimates derived from in-
stitutional energy-use data and modelling extend up to ~20kg
CO,e, depending on utilisation, scan protocols and local energy
grids. MRI scans are significantly more energy-intensive, rang-
ing from 17-22kg CO,e per scan in most studies [45, 53, 55] to
200-300kg CO,e for high-field 3T systems [56]. Both modalities
suffer from substantial non-productive energy consumption,
particularly during standby and idle periods, which offers a crit-
ical area for intervention [57, 61]. Studies consistently highlight
that power management protocols, equipment shutdown strate-
gies and more stringent imaging justification could dramatically
reduce the carbon footprint of cross-sectional imaging. The in-
clusion of environmental impact in imaging decision-making is
increasingly recognised as an essential element of sustainable
clinical practice [56]. Roletto et al. [66], through a systematic
review of LCA studies, emphasised the need for standardised
methodologies in measuring carbon footprints, reinforcing that
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TABLE 2

Risk of bias

Key findings

Environmental metric

Diagnostic modality Study design

Country/Region

Year

First author

Moderate

Operational changes

14.9t CO,e/year saved
per scanner by overnight

Observational
audit (operational

MRI

USA

2023

Woolen et al. [61]

(power management)
yield sizable savings

power-down

intervention)

Moderate—

Highlights large annual

CT:20,000-35,000kWh/year

Mini review/expert

General imaging

(urology context)
(CT, MRL PET-CT)

Switzerland/

2023

Merkle et al. [5]

high

footprints; powering off

(~6000-10,500kg CO,e),
MRI: 80,000-170,000kWh/

year (~24,000-51,000kg CO,e),

commentary

Germany

equipment during off-
hours can significantly

reduce emissions

PET-CT: 52,000kWh/
year (~15,600kg CO,e)

High

Order-of-magnitude
estimates; not primary

200-300kg CO,e/exam (3T

Narrative review/

MRI (3T)

2021 Italy

Picano et al. [56]

MRI); MRI+ CT~0.77%

viewpoint

LCA/audit data

of global CO, (2016)

Moderate—

Synthesises LCA

40%-91% non-productive
energy; potential savings

Systematic
review (LCAs)

General imaging

Italy

2024

Roletto et al. [62]

high

methods; large
idle energy share

14,180-171,000kWh/year

across devices

Abbreviations: CO,e, carbon dioxide equivalent; CT, computed tomography; LCA, life cycle assessment; MRI, magnetic resonance imaging; PET-CT, positron-emission tomography-CT; US, ultrasound.

the environmental burden of CT remains significant across
healthcare systems.

3.2.21 | Computed Tomography. Several studies quan-
tified CT-related emissions. Estimates from direct LCAs sug-
gest that a single abdominal CT scan has a carbon footprint
of between 7 and 10kg CO,e per procedure [5, 45, 53]. Pohl
et al. [45] reported ~7kg CO,e per scan, while McAlister et al.
[53] found ~9.2kg CO,e in a prospective Australian LCA.
Merkle et al. [5] provided comprehensive energy assessments
in urological practice, reporting that CT scanners consumed
20,000-35,000kWh annually, corresponding to approximately
6000-10,500kg CO,e per scanner per year. Institutional energy
consumption studies indicate that CT scanners may generate
broader per-scan emissions that can rise by 30%, reaching up to
~20kg CO,e per scan, depending on throughput, scan parame-
ters and local energy mix [54].

Standby energy consumption emerged as a modifiable contrib-
utor. Heye et al. [10] showed that shutdown protocols substan-
tially reduce unnecessary consumption, while Bastian et al. [58]
demonstrated that switching dual-energy CT scanners from idle
to off mode could prevent up to 5868 kg CO,e per scanner each
year. Also Vosshenrich et al. [57] confirmed that over 90% of en-
ergy consumption in interventional imaging systems, including
CT, occurs during non-productive periods, highlighting the im-
portance of effective power management strategies. At a system
level, Furlan et al. [59] estimated that reducing unwarranted CT
and MRI across G20 countries could prevent up to 175,120 tons
of CO,e per year. While these estimates are not specific to IBD
monitoring, they underscore the potentially large-scale environ-
mental benefits of avoiding unnecessary imaging.

Importantly, Kouropoulos [54] projected that, without interven-
tion, carbon emissions from CT and MRI combined would in-
crease by approximately 30% globally between 2018 and 2030.

3.2.2.2 | Magnetic Resonance Imaging. MRI was consis-
tently identified as the most energy-intensive and carbon-heavy
imaging modality. Unlike CT, MRI does not involve ionising
radiation but requires continuous cryogenic cooling, resulting
in a baseline energy burden independent of patient throughput
[60]. The carbon footprint of a single MRI scan varies consider-
ably, ranging from 17 to 22kg CO,e per scan, depending on field
strength, protocol duration and life cycle boundaries [10, 53, 55,
61], up to 200-300kg for high-field 3T systems [56]. McAlister
et al. [53] estimated an average carbon footprint of 17.5kg CO,e
per MRI scan, while Pohl et al. [45] reported a slightly higher
estimate of 20kg CO,e per scan. Esmaeili et al. [55] provided a
detailed LCA, estimating a per-patient carbon footprint of 22.4 kg
CO,e, with substantial contributions from out-of-hospital elec-
tricity generation and consumable production. Energy con-
sumption data presented by Merkle et al. [5] indicated that
MRI systems used in urology can consume between 80,000
and 170,000kWh/year, resulting in annual carbon emissions
ranging from approximately 24,000 to 51,000kg CO,e per scan-
ner. Picano [56] provided one of the highest emission estimates,
reporting that a single 3 Tesla MRI scan may generate between
200 and 300kg CO,e per procedure. The study also estimated
that MRI and CT combined accounted for 0.77% of global CO,e
in 2016, emphasising the critical need to include environmental
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sustainability considerations in the clinical decision-making
process for imaging modalities.

Operational interventions can yield meaningful reductions.
Woolen et al. [61] demonstrated that implementing power man-
agement strategies, such as switching MRI units to power-save
mode during off-hours, can reduce annual emissions by 8.7-14.9
metric tons of CO, per scanner. Vosshenrich et al. [57] similarly
highlighted that non-productive energy use dominates MRI op-
erational footprints, accounting for over 90% of total energy con-
sumption, which could be mitigated by powering off systems
when not in use. Kouropoulos [54] emphasised the expected esca-
lation in carbon emissions from MRI operations if global imaging
demand continues to rise without sustainability interventions.

3.2.2.3 | Indirect Emissions. Beyond direct scanning,
indirect emissions substantially add to the footprint of CT
and MRI. These include equipment production, transportation,
installation, maintenance and contrast media manufacturing
[5, 60, 65]. Both modalities also rely on energy-intensive insti-
tutional infrastructure, including dedicated imaging suites,
ventilation and cooling systems, extensive digital data storage
and routine maintenance services [10, 61]. CT-specific contribu-
tors include high-power X-ray generation, equipment manufac-
turing, infrastructure energy consumption and long-term digital
storage requirements [61]. MRI requires continuous 24/7 energy
input to maintain cryogenic cooling, creating a significant base-
line energy burden independent of patient throughput [10, 56,
60]. Indirect emissions, often underestimated, were consistently
identified as a major component of cross-sectional imaging's
environmental impact. Non-productive energy use is a domi-
nant source of emissions. Idle and standby consumption account
for >90% of total energy use in many CT and MRI systems [57,
58]. Esmaeili et al. [60] emphasised that in-hospital idle energy
consumption can exceed the energy used for image acquisition
by a factor of 14-30 times, making it a critical area for carbon
reduction. In subsequent work, Esmaeili et al. [55] quantified
the life cycle impact of MRI procedures, estimating a per-patient
carbon footprint of 22.4kg CO,e, with significant out-of-hospital
contributions from electricity generation and consumable pro-
duction. Woolen et al. [61] demonstrated that substantial CO,
savings can be achieved by simple operational changes, such as
implementing overnight shutdown protocols for MRI systems,
saving 8.7-14.9 tons CO, per scanner annually. Similarly, Merkle
et al. [5] and Vosshenrich et al. [57] emphasised that optimising
equipment utilisation efficiency, not just procedure volume, is
essential for carbon mitigation.

In addition to equipment and facility-related emissions, the
long-term storage of medical imaging data represents an emerg-
ing contributor to the ecological cost of diagnostic imaging. The
expansion of Picture Archiving and Communication Systems
(PACS) and the reliance on energy-intensive data centres require
continuous electricity for cooling and maintenance, thereby
contributing significantly to GHG emissions [62].

Contrast media are another contributor: iodinated agents (CT)
and gadolinium-based agents (MRI) entail environmental costs
from production and disposal, with gadolinium persistence doc-
umented in wastewater and ecosystems [67, 68]. Additionally,
transportation of patients and staff, due to the centralisation of

imaging services, can account for a substantial proportion of
total emissions. All these indirect emissions may account for over
60% of the total carbon footprint of imaging procedures [55].

Finally, predictive global modelling suggests that the carbon emis-
sions from CT and MRI are expected to rise sharply due to increas-
ing imaging demand worldwide, with indirect emissions from
manufacturing, facility infrastructure and maintenance projected
to make up a growing share of the total environmental impact [54].

3.2.3 | Intestinal Ultrasound

Ultrasound consistently emerged as the imaging modality
with the lowest carbon footprint across all studies included
[5, 34, 45, 53, 63-65] (Table 3). It was broadly recognised for
its minimal energy requirements, negligible embedded carbon
costs and absence of resource-intensive contrast agents or spe-
cialised infrastructure.

Three studies specifically addressed IUS and point-of-care
ultrasound (POCUS) in the management of IBD [34, 63, 64].
Nwaezeigwe et al. [34] conducted a retrospective audit and es-
timated that IUS produced ~1kg CO,e per scan, with the sub-
stitution of cross-sectional imaging leading to a total saving of
3269kg CO,e over 1year. This reduction was largely attributed to
its bedside applicability, rapid execution and avoidance of refer-
rals for CT, MRI, contrast agents and repeated patient transpor-
tation. Dolinger and Kayal [63, 64] further emphasised, in expert
review/commentaries, that IUS represents a low-emission, clin-
ically effective imaging option, particularly suitable for disease
monitoring and treatment assessment in paediatric IBD. Both
studies underscored that ITUS combines environmental sustain-
ability with clinical efficiency by minimising the number of
high-emission diagnostic procedures required per patient.

Martin et al. [65] compared abdominal US (not specifically TUS)
with CT and MRI in abdominal imaging, demonstrating that US
had the lowest energy consumption and GHG among the three
modalities. The study confirmed that US offers a dramatically
reduced environmental impact compared to CT and MRI, with-
out compromising diagnostic performance for many indications.

Quantitative estimates confirmed the low-carbon footprint of
US-based modalities. McAlister et al. [53] reported an average
emission of 0.5-1.5kg CO,e per scan in a prospective LCA, while
Pohl et al. and Nwaezeigwe et al. provided a closely aligned
estimate of approximately 1kg CO,e per procedure [34, 45].
Merkle et al. [5] reported an annual energy consumption for
US machines at <2000 kWh, corresponding to ~600-740kg
CO,e per year per scanner, the lowest among diagnostic imag-
ing modalities. Importantly, Merkle et al. [5] emphasised that
further emission reductions could be achieved by powering off
US equipment during periods of non-use, suggesting that minor
operational changes could improve sustainability even further.

4 | Discussion

The rising burden of IBD presents not only clinical but also envi-
ronmental challenges for healthcare systems [69-72]. As chronic
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diseases like IBD increasingly dominate healthcare resource
utilisation [9], the cumulative carbon footprint of diagnostic and
therapeutic pathways has become a significant, though histori-
cally under-recognised, contributor to healthcare-related GHG
emissions [6, 73].

This systematic review demonstrates that GI endoscopy, CT and
MRI, while essential for IBD care, are among the most resource-
intensive diagnostic modalities, with substantial carbon foot-
prints [21, 40, 42, 62, 65], whereas IUS represents a significantly
lower carbon, patient-centred and clinically validated alterna-
tive for disease monitoring [5, 34, 45, 53, 63-65].

Colonoscopy continues to be a cornerstone in the management
of IBD, enabling direct mucosal visualisation, histologic sam-
pling, mucosal healing assessment and colorectal cancer surveil-
lance [74-79], with its role strongly supported by international
guidelines [78, 80]. However, it is also one of the most resource-
intensive diagnostic procedures in IBD [21], generating an esti-
mated 7.8-56.4kg CO,-equivalent per procedure [6, 21, 41-43,
52], with the majority of emissions stemming from patient trans-
portation, disposable equipment use and facility-related energy
consumption [21]. Additionally, GI endoscopy units produce
significant amounts of solid and liquid waste per procedure, and
substantial energy consumption, with large volumes of recyclable
materials often discarded [42]. Sedation practices also influence
the carbon footprint of endoscopy. Rughwani et al. [44] noted that
anaesthesia choice contributes to variability in emissions, with
higher impacts in settings using general anaesthesia compared
with procedural sedation, although most studies did not stratify
results by anaesthesia type, limiting comparability across health-
care systems. Future research should report such stratified data
to allow more precise comparisons across healthcare systems.

Calls for system-level change are emerging. Several authors have
advocated for the urgent incorporation of planetary health prin-
ciples into endoscopy practice and training [81-83], and others
have proposed practical strategies to reduce the carbon footprint
of endoscopy, including leaner inventory management, telecon-
sultation pathways and decarbonised sterilisation systems [82].

Cross-sectional imaging, particularly CT and MRI, also plays a
pivotal role in IBD [14, 30, 53, 55, 58, 59, 61], particularly for
the assessment of transmural disease [30, 84], strictures, fistulae
[6, 73] and abscesses in CD [30, 85-89]. MRI has become the
preferred modality for longitudinal monitoring, particularly in
younger patients, due to its superior soft-tissue resolution and
lack of ionising radiation [12, 16, 18]. However, both CT and
MRI remain energy-intensive procedures with substantial car-
bon footprints [53, 62].

Based on the reviewed studies, CT scans typically generate
7-10kg CO,e per examination in direct LCAs [53, 60], even
reaching ~20kg per scan in broader modelling and institutional
energy-use studies, depending on utilisation, imaging protocols
and electricity sources. Indeed, Merkle et al. [5] estimated an-
nual CT scanner energy use in urological practice at 20,000-
35,000kWh/year (~6000-10,500kg CO,e/year) corresponding
to ~12-21kg CO,e per scan if ~500 scans are performed annu-
ally. Similarly, Kouropoulos [54] projected a 30% increase in CT-
related emissions by 2030 under current trends. Together, these

findings underscore the contrast between the relatively modest
per-scan footprint reported in controlled LCAs and the larger
system-level impact observed in real-world practice.

MRI generates between 17 and 78kg CO,-equivalent per scan,
and even more, depending on scanner type, imaging protocol and
energy sources [53, 60]. While MRI avoids radiation and modern
scanners and faster imaging protocols have improved energy ef-
ficiency, it presents an even greater environmental challenge due
to its high energy demand, particularly for continuous cooling,
which generates emissions even when the scanner is idle [10, 61].

The carbon footprint of CT and MRI in chronic disease monitor-
ing is still under-quantified and variably reported. Roletto et al.
[20] proposed a comprehensive LCA framework to standardise
sustainability assessments in diagnostic imaging, and McGinnis
et al. [90] emphasised the critical importance of adopting LCA
methods in clinical imaging workflows. Nonetheless, these im-
aging pathways represent a substantial, albeit still inadequately
measured, contribution to the carbon footprint of chronic IBD
care [6, 73], and their cumulative environmental burden war-
rants consideration, given the need for repeated imaging over
many years in this patient population [84].

In this landscape, IUS offers a compelling, low carbon and
patient-centred alternative for many diagnostic and monitor-
ing needs in IBD. With a per-examination carbon footprint
estimated at 0.5-1.5kg CO,-equivalent [34, 53, 65|, orders of
magnitude lower than GI endoscopy, CT or MRI [34, 53], IUS
significantly reduces the environmental impact of IBD care
(Figure 2). Unlike cross-sectional imaging, IUS requires min-
imal energy, generates negligible waste [67, 68, 91, 92], typ-
ically limited to ultrasound gel and gloves [61, 92, 93], and
does not rely on radiation, contrast agents or energy-intensive
infrastructure [67, 68, 91, 92]. Its portability and point-of-care
availability further minimise patient travel, a major emission
source identified for GI endoscopy [22, 64, 91, 94-96] (Figure 3).
Clinically, IUS enables real-time decision-making and sup-
ports tight disease control, allowing rapid therapeutic adjust-
ments, without the scheduling delays often associated with
endoscopy or radiology [28, 30, 64, 91, 95, 97, 98]. In parallel
with these sustainability benefits, IUS has also gained strong
clinical validation and is increasingly recognised worldwide
for its ability to provide real-time assessment of transmural in-
flammation [29, 31, 35, 63, 64, 99-102], bowel wall thickness
[22, 26, 35, 103-108], vascularity [22, 26, 35, 103-105], strictures
[24, 84], pre-stenotic dilatation [84], fistulae [109, 110] and intra-
abdominal abscesses [22, 109]. In both CD and UC, multiple pro-
spective studies [25, 27, 85, 94, 98, 99, 110-116] and systematic
reviews/meta-analyses [31-33, 84, 109, 117-120] have demon-
strated its excellent sensitivity and specificity for detecting active
inflammation, monitoring therapeutic response, and identifying
disease complications. Importantly, IUS has proven comparable
to magnetic resonance enterography (MRE) in several clinical
scenarios, especially for the monitoring of small bowel disease
activity and treatment response [22, 25, 84, 110, 113]. IUS is also
minimally invasive, well-tolerated by patients, and can be per-
formed at the point of care [36, 63, 94-96, 116, 121]. Therefore,
IUS facilitates decentralised diagnostic models that improve ac-
cess across both high- and low-resource settings [97]. Together,
these features position IUS as a clinically effective solution that
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FIGURE 2 | Carbon footprint of diagnostic modalities used in inflammatory bowel disease (IBD) management. Estimates are shown as ranges
derived from life cycle assessments (LCAs) and broader institutional or modelling studies. Ultrasound demonstrates the lowest footprint (0.5-1.5kg
CO,pe), followed by CT (7-10kg CO,e per scan in LCAs, up to ~20 in institutional data), gastrointestinal endoscopy (7.8-56.4kg CO,e) and MRI, which
shows the widest variability (17-300kg CO,e).
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FIGURE 3 | Environmental impact points across diagnostic tools in inflammatory bowel disease (IBD). The figure summarises pre-, intra-
and post-procedure contributors to carbon emissions and resource use for endoscopy, cross-sectional imaging (CT and MRI) and ultrasound (US).
Endoscopy and cross-sectional imaging are associated with substantial travel, energy consumption, disposables and waste management, whereas US
demonstrates minimal energy use, negligible disposables and reduced ancillary infrastructure needs.

could reshape chronic disease monitoring [122]. Despite these standardised training programmes and international educa-
advantages, limitations remain. Operator dependence is often tional initiatives that have demonstrated reproducible learning
cited as a limitation. However, this is being addressed through curves [112] and high inter-observer agreement among trained
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clinicians [123]. Expanding access to formal IUS training thus
represents a feasible and actionable strategy to promote both
clinical excellence and diagnostic sustainability, making its
wider adoption both feasible and clinically safe [122-124].

Additionally, TUS remains underutilised, particularly outside
Europe [122]. This underuse reflects a combination of historical
practice patterns, limited training availability [125], and insuffi-
cient integration into diagnostic algorithms and reimbursement
frameworks [126]. To fully realise the potential of IUS, future
efforts should prioritise its inclusion in gastroenterology train-
ing programmes, revise clinical guidelines to incorporate sus-
tainability considerations, and adapt reimbursement policies to
support low-carbon care pathways [34, 127].

It is also important to recognise that in clinical practice, IUS
is often used in combination with faecal calprotectin or other
laboratory biomarkers [128-130], and in some cases, abnormal
results on IUS or biomarkers may lead to an earlier endoscopic
reassessment. These additional steps carry their own environ-
mental costs, which were not quantified in this review. Likewise,
scaling up IUS availability will require training programmes
and acquisition of new equipment, introducing an initial carbon
cost, though this is likely outweighed by long-term benefits com-
pared with more resource-intensive imaging modalities.

One of the strengths of this study is that it represents the first
systematic review to comprehensively evaluate the environ-
mental impact of diagnostic imaging used in IBD management,
encompassing GI endoscopy/colonoscopy, CT, MRI and IUS.
This review synthesises both quantitative and qualitative data,
enabling direct comparison of carbon footprints across these
different diagnostic modalities. Compared to previous sustain-
ability research in endoscopy and diagnostic imaging, this re-
view offers a more disease-specific analysis, focusing on chronic
care pathways like IBD. Previous studies have acknowledged
the environmental burden of diagnostic imaging, but often
lacked detailed carbon quantification or did not explore disease-
specific impacts over time. Our findings align with existing es-
timates of emissions per procedure but uniquely highlight the
potential of IUS as a low-carbon, scalable alternative.

While this study offers novel insights, it is important to acknowl-
edge its limitations. The included studies exhibit considerable
heterogeneity in LCA methodologies and reporting standards,
which may affect comparability. Roletto et al. [20] proposed a
comprehensive LCA framework to standardise sustainability as-
sessments in diagnostic imaging, and McGinnis et al. [90] empha-
sised the critical importance of adopting LCA methods in clinical
imaging workflows. Further research is needed to conduct stan-
dardised, multicentre LCA across diverse healthcare settings to
more accurately quantify the carbon impact of diagnostic path-
ways [20, 66]. Data on indirect emissions, such as those associated
with patient transportation and equipment standby energy con-
sumption, were inconsistently reported. There is also a need to
evaluate the cumulative carbon footprint of IBD diagnostics over
the full course of the disease. Additionally, most studies were con-
ducted in Europe and North America, with only one Indian study,
potentially limiting generalisability to low-resource settings.
Longitudinal, real-world data on the cumulative carbon footprint
over the full diagnostic journey of IBD patients remain limited.

Finally, an additional future consideration is the impact of artificial
intelligence (AI) on the carbon footprint of diagnostic imaging. On
one hand, Al-based image analysis could enhance efficiency by
reducing the need for repeat or unnecessary examinations, thus
potentially lowering overall emissions. On the other hand, the
training and deployment of large AI models are themselves energy-
intensive processes that contribute significantly to greenhouse gas
emissions, particularly when relying on cloud-based data centres.
The net environmental impact of Al in diagnostic imaging will
therefore depend on the balance between these opposing forces,
and warrants systematic evaluation in future research [131].

The experience in IBD with IUS offers a clear example of how
healthcare can pursue low-carbon precision medicine without
sacrificing diagnostic accuracy. Wider adoption of IUS would
represent a pragmatic step towards decarbonising chronic disease
management while preserving high-quality care [132] and align-
ing healthcare delivery with planetary health objectives [1-4].

In the context of escalating climate concerns, re-evaluating di-
agnostic pathways through the lens of planetary health is no lon-
ger optional but necessary [36, 133, 134].
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