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Effectively reducing climate change requires marked, global behavior change. However, it is unclear which strate-
gies are most likely to motivate people to change their climate beliefs and behaviors. Here, we tested 11 expert-
crowdsourced interventions on four climate mitigation outcomes: beliefs, policy support, information sharing 
intention, and an effortful tree-planting behavioral task. Across 59,440 participants from 63 countries, the inter-
ventions’ effectiveness was small, largely limited to nonclimate skeptics, and differed across outcomes: Beliefs 
were strengthened mostly by decreasing psychological distance (by 2.3%), policy support by writing a letter to a 
future-generation member (2.6%), information sharing by negative emotion induction (12.1%), and no interven-
tion increased the more effortful behavior—several interventions even reduced tree planting. Last, the effects of 
each intervention differed depending on people’s initial climate beliefs. These findings suggest that the impact of 
behavioral climate interventions varies across audiences and target behaviors.

INTRODUCTION
The climate crisis is one of humanity’s most consequential and chal-
lenging problems (1). Successfully rising to the challenge depends 
on both “top-down” structural changes (e.g., regulation and invest-
ment) and “bottom-up” changes (e.g., individuals’ and collectives’ 
beliefs and behaviors). These bottom-up processes require wide-
spread belief in climate change, support for climate change policy, 
and willingness to engage in climate action (2–4). The behavioral 
sciences have been seen as a crucial component in promoting 
bottom-up change, through the development of large-scale inter-
ventions that can shift public opinion and enable and support top-
down governmental climate policies (5–7). However, it is unclear 
which strategies are most likely to motivate people to change their 
climate change beliefs and climate mitigation behaviors. Here, we 
assess the effectiveness of expert-crowdsourced, theoretically de-
rived interventions at promoting a range of climate change mitiga-
tion behaviors in a large and diverse global sample.

A growing body of research across the behavioral sciences has 
been investigating intervention strategies aimed at boosting sus-
tainable intentions and behaviors such as recycling, public trans-
portation use, and household energy saving (3, 8, 9). For instance, 
communications aimed at reducing the psychological distance of 
climate change, by making it feel more geographically, socially, and 
temporally close, were effective at increasing climate concern and 
amplifying self-reported intentions to engage in mitigating behav-
iors, such as reducing energy consumption (10). Similarly, norma-
tive appeals that include an invitation to work together and “join 
in” were found effective at influencing behaviors such as charitable 
giving (11). These are only two examples in a growing list of behav-
ioral interventions designed to mitigate climate change. Hence, 
there are numerous competing theories in the behavioral sciences 
about how to stimulate climate change beliefs and proenviron-
mental behaviors.

While many of these theories, as well as their corresponding in-
terventions, are promising, they have been tested independently 
with different samples and, on separate outcomes, making it impos-
sible to directly compare their effectiveness. In addition, assessing 
interventions on a single outcome renders it difficult to understand 
their effects on multiple facets of climate mitigation, which are all 
necessary to substantially reduce climate change (e.g., support for 
climate mitigation policy and sustainable behavior). These limita-
tions are a major barrier to resolving theoretical debates within the 
scientific community (12, 13) and to translating scientific findings 
into impactful policies (14, 15). Moreover, traditional attempts to 
compare interventions (e.g., meta-analyses) (16) are limited by dif-
ferences in experimental protocols, outcome variables, samples, and 
operationalizations (17, 18, 19). These differences hinder evaluations 
of the relative effectiveness of different theories and interventions 
(15). To address these concerns, we used the megastudy approach—
an experimental paradigm similar to a randomized controlled trial 
but designed to evaluate the efficacy of many interventions on sev-
eral outcome variables, in the same large-scale experiment (18). This 
provides a rigorous direct comparison of competing approaches to 
climate change mitigation.

Another challenge is that most prior work across the behavioral 
sciences (including the megastudy approach) has been mainly con-
ducted on Western, educated samples from industrialized, rich, and 
developed countries (i.e., WEIRD) (20). Results from these samples 
may not generalize to other nations, restricting the ability to apply 
findings beyond WEIRD populations. This is a particular problem 
for a topic like climate change where the social and political dynam-
ics, as well as exposure to the impacts of climate change, vary across 
countries (21, 22). While wealthier nations are disproportionately 
responsible for causing climate change (23), it is still important to 
understand which interventions work across a diversity of cultures 
since the most effective mitigation strategies will likely require 
global cooperation. Accordingly, we leveraged the many labs approach, 
in which the same study is being conducted by many research See last page for author affiliations.
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laboratories around the world, aggregating the results in the same 
international dataset (17, 24).

In this global megastudy, we crowdsourced interventions previ-
ously found to stimulate climate mitigation from behavioral science 
experts (fig. S5). We used a crowdsourcing approach to determine 
which interventions to test, given recent evidence that crowdsourc-
ing can improve the quality of scientific investigations by promoting 
ideation, inclusiveness, transparency, rigor, and reliability (25). This 
resulted in the identification of 11 behavioral interventions based on 
competing theoretical frameworks in the behavioral sciences (Fig. 1).

We tested these interventions in a global tournament spanning 
63 countries on four outcome variables, which were also crowdsourced 
and selected on the basis of their theoretical and practical relevance 
to climate mitigation. The first outcome on which we assessed each 
intervention was belief in climate change (four items; e.g., “Climate 
change poses a serious threat to humanity”). Given that belief is a key 
antecedent of proenvironmental intentions, behavior, and policy 
support (26), we examined how the interventions would affect these 
outcomes for different people along the belief continuum ranging 
from skeptics to true believers.

The second outcome was support for climate change mitigation 
policy (nine items; e.g., “I support raising carbon taxes on gas/fossil 
fuels/coal”). Given that successful climate mitigation requires large-
scale policy reform (1) and the public’s support for climate policies 
is the top predictor of policy adoption (27), this outcome variable 
reflects the importance of impactful systemic change, rather than 
private mitigation efforts based on individual decision-making 
(28–30). Recent work argues that individual-level behaviors should 
be targeted alongside structural changes (31), especially since fram-
ing climate change as an individual level problem can backfire, 
leading to feelings of helplessness and concerns about free riding 
(32, 33).

To target more ecologically valid behavior and climate activism 
(34), the third outcome was willingness to share climate mitigation 
information on social media (i.e., “Did you know that removing 
meat and dairy for only two out of three meals per day could de-
crease food-related carbon emissions by 60%?”). While this behav-
ior is relatively low effort, recent work suggests climate information 
sharing with one’s community as an essential step in addressing the 
climate crisis (35).

Last, given the large gap between self-reported measures and ob-
jective proenvironmental behavior (36), the fourth outcome we tar-
geted was a more effortful behavior of contributing to a real tree 
planting initiative by engaging in a cognitively demanding task (i.e., 
a modified version of the work for environmental protection task or 
WEPT) (37). The WEPT is a multitrial, web-based procedure in 
which participants choose to exert voluntary effort screening stimu-
li for specific numerical combinations (i.e., an even first digit and 
odd second digit) in exchange for donations to a tree-planting envi-
ronmental organization. Thus, they had the opportunity to produce 
actual environmental benefits at actual behavioral costs, mimicking 
classic sustainable behavior trade-offs (38–40).

Participants (N = 59,440, from 63 counties; Table 1) were most-
ly recruited through online data collection platforms (80.8%) or via 
convenience/snowball sampling (19.1%; Table  1). They were ran-
domly assigned to 1 of 11 experimental interventions (Fig. 1) or a 
no intervention control condition in which they read a passage 
from a literary text. Then, in a randomized order, participants indi-
cated their climate beliefs, climate policy support, and willingness 

to share climate-related information on social media. Last, partici-
pants were able to opt into completing up to eight pages of a tree-
planting task, each completed page resulting in the real planting of 
a tree through a donation to The Eden Reforestation Project. As a 
result of participants’ behavior, our team actually planted 333,333 
trees. Assuming that the average fully grown tree absorbs between 
10 and 40 kg of carbon dioxide per year in 5 to 10 years when all 
trees are fully grown, the efforts from this project will result in 
~9,999,990 kg of carbon dioxide sequestered per year, which is the 
equivalent amount of carbon dioxide used to produce energy for 
1260 U.S. homes.

RESULTS
Main effects of intervention
First, we examined the effect of each intervention on each of the four 
outcomes, estimated using a series of Bayesian regressions (see Ma-
terials and Methods). As the goal of this study is to estimate the rela-
tive effectiveness of treatments, in contrast to establishing non-null 
effects or differences, Bayesian estimation is preferable to classical 
null hypothesis significance testing. Bayesian techniques produce 
posterior distributions for parameters (here, treatment effects) that 
characterize their magnitude and associated uncertainty. We sum-
marize this distribution in Fig. 2 using a point estimate correspond-
ing to the mean and a 94% credible region, which differs from a 
confidence interval in which it indicates a region with a 94% chance 
of containing the unobserved parameter value (41). Moreover, we 
also conducted similar frequentist analyses (hierarchical mixed 
models) and found converging results (see the Supplementary Ma-
terials for details).

We began by assessing the main intervention effects on each out-
come. For belief in climate change (measured on a scale from 0 to 
100), the top performing intervention, decreasing psychological dis-
tance, increased beliefs by an absolute effect size of 2.3% (1.6 to 2.9) 
(94% credible region) compared to the control condition. Consis-
tent with prior work (10), some interventions slightly increased be-
liefs. However, other interventions had near-zero effect, suggesting 
that findings of some prior research did not extend to this context 
(Fig. 2A) (11).

For climate policy support (measured on a scale from 0 to 100), 
the intervention with the largest average effect was writing a letter to 
a member of the future generation, which increased policy support 
by 2.6% (2.0 to 3.2). Similar to belief, all interventions produced ei-
ther more policy support or no discernible differences from the con-
trol condition (Fig. 2B).

For willingness to share climate change information on social 
media (measured as a binary choice), all interventions generally in-
creased intentions to share. The largest gains were exhibited in the 
negative emotion induction condition, which led to 12.1% (9.8 to 
14.6) more sharing compared to the control condition (Fig. 2C).

For the number of pages completed on the WEPT tree-planting 
task (from 0 to 8), no intervention was better than the control 
condition, and some interventions (i.e., decreasing psychological 
distance, inducing negative emotions, work-together normative 
appeals, and writing a letter to a future-generation member) 
appeared to reduce tree planting (Fig. 2D). These results held re-
gardless of the operationalization of a tree planted as participants’ 
confirmation that they wanted to complete another WEPT page 
or their accuracy in the task (table S24).
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The interventions that produced negative effects on the WEPT 
were also those that took the most time to complete (see the Supple-
mentary Materials). Assuming that participants have a limited bud-
get of time for completing surveys and given that the tree-planting 
task requires time, it is expected that we observed a trade-off be-
tween the time spent on the intervention and on the outcome task. 
Therefore, in an exploratory analysis (tables  S22 and S23), we as-
sessed the effects of the interventions when adjusting for the time 
spent on each intervention. While we still observed the negative ef-
fects of some interventions on tree planting, we now also observed 
positive effects of five interventions. That is, when controlling for 
intervention length, binding moral foundations, scientific consen-
sus, dynamic norms, pluralistic ignorance, and system justification 
all increased the number of trees planted compared to the control 
condition. Thus, in the absence of time constraints, these interven-
tions might increase proenvironmental behavior. However, the de-
gree to which these findings actually generalize to proenvironmental 
behaviors that do not hinge on time (e.g., donations) should be as-
sessed in future studies.

For further assessing the average effects of each intervention on 
each outcome within any subsample of interest varying along demo-
graphics such as nationality, political ideology, age, gender, education, 
or income level, we provide an easy to use and disseminate web tool: 
https://climate-interventions.shinyapps.io/climate-interventions/.

Heterogeneous intervention effects along initial 
belief continuum
We found a high level of belief in climate change [i.e., 85.7% (85.2 to 
86.2), an estimate computed using the ratings of belief in the control 
participants and estimated preintervention levels of belief from all 
other participants]. This could raise two potential concerns when 
evaluating the main effects of the interventions mentioned above: 
On the one hand, at this high level of belief, participants may be 
particularly receptive to interventions. As a result, average effects 
may tend to overestimate the effectiveness of interventions in ap-
plied contexts where the aim is to increase belief or policy support in 
skeptical participants that do not already believe in climate change. 
On the other hand, as our outcomes are bounded, these high levels 
of belief may lead to ceiling effects in the estimation of the average 
effects, which may undervalue the true effectiveness of the interven-
tions. To address this concern, we conducted an additional analysis 
where we modeled heterogeneous effects as a function of unob-
served preintervention belief (see Materials and Methods and the 
Supplementary Materials). This analysis allowed us to visualize how 
effective interventions were across the continuum from climate 
change skeptics (i.e., those with initial beliefs less than 35%) to true 
believers (i.e., those with initial beliefs higher than 65%; Fig. 3).

For the impact of interventions on belief (Fig. 3A), we found clear 
indications of ceiling effects with many interventions being maxi-
mally impactful among uncertain participants, even those with low 
to moderate levels of initial belief. Even in participants with low lev-
els of preexisting climate change belief (i.e., less than 35%), interven-
tions such as reducing psychological distance, future self-continuity, 
and effective collective action are all viable ways to increase belief in 
climate change.

For policy support, a different pattern emerged. Interventions 
such as writing a letter to a member of the future generation, collec-
tive action efficacy, future self-continuity, and decreasing psycho-
logical distance all increased support for climate policy (Fig.  3B). 

Those same interventions appear to function well on individuals 
with modest to high levels of initial climate change belief (i.e., at ~35 
to 90%; Fig. 3B). However, they were relatively ineffectual among 
those that were low in initial belief (i.e., climate skeptics). The main 
exception is in writing a letter to a member of the future-generation 
intervention, which worked across nearly the entire spectrum of ini-
tial belief. In addition, for those that were very low to moderate (i.e., 
0 to 65%) on initial belief, the negative emotion intervention ap-
peared to backfire, reducing support for climate change policies. 
Similar to belief, the work-together normative appeal also slightly 
backfired in participants with moderate levels of initial belief.

Regarding social media sharing, nearly all interventions (i.e., 9 of 11) 
increased willingness to share even at moderate levels of initial belief 
(i.e., those greater than ~35 to 60%). Moreover, the increase in willing-
ness to share by inducing negative emotions extended into individuals 
who generally do not believe in climate change. Last, the work-together 
normative appeal intervention backfired among those who are very low 
on initial belief (i.e., ~0 to 15%), reducing their willingness to share in-
formation on social media by up to 12%. Last, for the tree-planting task, 
more than half of the interventions decreased the number of pages 
completed on the WEPT across all levels of initial belief (Fig. 3D).

Country-level main effects
Last, we examined the country-level main effects for each of our key 
outcome variables. We found that average belief in climate change, 
across all countries surveyed, was high [85.7% (85.2 to 86.2); this 
includes both ratings of belief in the control participants and esti-
mated preintervention levels of belief from all other participants]. 
There was a very little variation between countries (Fig. 4A, fig. S4A, 
and table  S5) indicating a clear majority belief in climate change. 
Similar patterns were observed for policy support (Fig. 4B), with all 
countries indicating clear majority support for a variety of climate 
change policies [72.2% (71.6 to 72.8)]. These results suggest that 
there is clear and consistent global consensus regarding the dangers 
posed by climate change and the importance of enacting climate 
change mitigation.

Other outcome variables exhibited larger variation across coun-
tries. Willingness to share climate change–related information on 
social media was more modest [56.9 (56.4 to 57.5)] and variable, 
ranging from low in Latvia of 17.6% (14.3 to 21.4) to high of 93.3% 
(90.4 to 95.7) in Kenya (Fig. 4C). These results suggest that observa-
tions of climate change discussion online may not accurately reflect 
global sentiments about the reality of climate change but rather dif-
ferent local norms. Last, half of all participants (50.7% of total sam-
ple and 53.1% of control condition sample) completed all eight 
pages of the WEPT, earning the maximum number of trees possible, 
with an overall average of 5.2 (5.1 to 5.3) pages completed (Fig. 4D).

DISCUSSION
In a global megastudy conducted on a sample of 59,440 people 
from 63 countries, we empirically assessed the relative effectiveness 
of 11 expert-crowdsourced, theoretically derived behavioral inter-
ventions at stimulating climate mitigation beliefs and behaviors 
(i.e., climate change beliefs, policy support, willingness to share in-
formation, and tree-planting contributions). We found that differ-
ent interventions tended to have small global effects, which varied 
across outcomes and largely affected nonskeptics, emphasizing the 
importance of examining the impact of climate interventions on a 
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range of outcomes before drawing conclusions regarding their 
overarching relative efficacy. These findings suggest that the impact 
of behavioral climate interventions varies across audiences’ charac-
teristics and target behaviors.

Here, climate change beliefs were strengthened most by decreas-
ing the psychological distance of climate change. Support for cli-
mate change mitigation policy was increased mostly by writing a 
letter to be read in the future by a socially close child, describing 
one’s current climate change mitigation actions. Willingness to share 
climate change information on social media was increased most by 
inducing negative emotions through “doom and gloom”–styled 
messaging about the consequences of climate change. Last, while 
half of the tested interventions had no effect on the effortful tree-
planting behavior, the other half of the interventions reduced the 
number of trees participants planted. Beyond revealing the utility of 
harnessing a multioutcome approach, these results also highlight 
the need for tailoring interventions to target outcomes.

Our findings extend prior work and are theoretically informative 
in several ways. Notably, these findings help reconcile several theo-
retical debates in the literature. For example, some have argued in 
favor of using a doom and gloom messaging style in climate com-
munications (i.e., induce negative emotions) as a way to stimulate 
climate mitigation behaviors (42). For instance, recent work found 
that online news consumption is largely driven by the negative con-
tent of the news (43). However, others have warned that this mes-
saging may have no impact on behavior (44) or, worse, that it may 
depress and demoralize the public into inaction (45). Here, we 
found empirical support for both accounts on different outcomes: 
While negative emotion messaging was highly effective at 

stimulating climate information–sharing intentions (a relatively 
low-effort behavior), it decreased tree-planting efforts. Further, the 
negative emotion induction intervention appeared to backfire on 
policy support among participants with low initial climate beliefs. 
These results suggest that climate scientists should carefully consid-
er the differential effects of the prevalent fear-inducing writing styles 
on different proclimate outcomes. Moreover, it suggests that theo-
retical models need to explain divergent patterns across outcomes.

The results also indicate that the impact of the interventions on 
each outcome depends on peoples’ preexisting belief in climate 
change, supporting the claim that interventions need to be tailored 
to the characteristics of their audience (44, 45). For belief, the effec-
tiveness of several interventions (e.g., decreasing the psychological 
distance and collective action efficacy) was maximized among the 
uncertain, with lesser effects among believers and skeptics. For pol-
icy support, however, interventions were generally only effective 
among those with high initial levels of belief, with negative emo-
tions backfiring among skeptics. Similarly, the robust increases in 
willingness to share on social media were largely restricted to people 
who already believed in climate change—with negative emotions 
increasing sharing intentions even among skeptics. For the higher 
effort behavior, however, interventions appeared to uniformly re-
duce tree planting across all levels of initial belief.

Given the heterogeneity of these results across outcomes, we cre-
ated a web tool resource (https://climate-interventions.shinyapps.io/
climate-interventions/) that can easily and rapidly assess intervention 
efficacy across each of the four outcomes and across a range of vari-
ables, including country, political ideology, gender, age, socioeco-
nomic status, income, and education. While we caution that users 

Fig. 1. Interventions, theoretical frameworks, and brief descriptions. 
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Table 1. Variables on which the samples in each country were matched to the population. Countries in which no demographic variable was census 
matched are marked as “N/A” in the “matched variables” column. SES, socioeconomic status.

Sample Matched variables N Sample Matched variables N

Algeria N/A 528 Philippines N/A 145

Armenia N/A 492 Poland_1 Age, gender, education 1883

Australia Gender 979 Poland_2 N/A 463

Austria Age, gender 502 Portugal N/A 499

Belgium_1 Age, gender 522 Romania N/A 411

Belgium_2 Age, gender 512 Russia_1 N/A 718

Brazil Age, gender, education 1261 Russia_2 Region, ethnicity 395

Bulgaria Age, gender 778 Russia_3 N/A 322

Canada_1 N/A 858 Saudi Arabia N/A 489

Canada_2 Age, gender 303 Serbia N/A 337

Chile Age, gender, region, 
SES

1992 Singapore N/A 500

China N/A 896 Slovakia Age, gender, region, 
municipality size

1027

Czechia N/A 547 Slovenia Age, gender 501

Denmark Age, gender, region 792 South Africa Age, gender 496

Ecuador Age, gender, region 679 South Korea Age, gender 639

Finland Age, gender 625 Spain_1 N/A 110

France Age, gender 1480 Spain_2 Age, gender, region 434

Gambia N/A 527 Sri Lanka N/A 413

Germany Age, gender, region 1545 Sudan Age, gender 623

Ghana Age, gender 522 Sweden Age, gender 2393

Greece Age, gender 597 Switzerland_1 Age, gender 512

India N/A 688 Switzerland_2 Age, gender 531

Ireland N/A 753 Taiwan N/A 206

Israel Age, gender, region, 
ethnicity

1384 Tanzania Age, gender 104

Italy_1 Age, gender, region 591 Thailand N/A 586

Italy_2 Gender 993 Turkey_1 N/A 359

Japan_1 N/A 653 Turkey_2 Age, gender 347

Japan_2 Income, education, 
region, ethnicity

802 Uganda Age, gender 476

Kenya Age, gender 409 UK_1 N/A 220

Latvia Income, education, 
ethnicity

485 UK_2 Age, gender 952

Mexico Age, gender 490 UK_3 N/A 234

Morocco Age, gender 474 UK_4 gender 501

Netherlands_1 Age, gender 854 Ukraine N/A 496

Netherlands_2 Age, gender 510 UAE Broadly representative 554

Netherlands_3 N/A 500 Uruguay N/A 838

New Zealand Gender 1005 USA_1 Age, gender 2360

Nigeria Age, gender 1513 USA_2 Age, gender, region, 
ethnicity

5055

North Macedonia N/A 878 USA_3 Age, gender 497

Norway Age, gender, ethnicity 997 Venezuela N/A 110

Peru Age, gender 405 Vietnam N/A 383
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must take into account the sample sizes when exploring subsamples 
of the data and the fact that they are looking at percentage of change 
compared to the control condition, this web tool can be used as a 
rapid and intuitive way to query intervention efficacy within subsam-
ples of interest. For example, for highly educated conservatives in the 
United States, the top intervention to increase climate policy support 
was the future self-continuity intervention, increasing support by 
18%. This intervention also increased climate beliefs in Russian par-
ticipants by 9%. The scientific consensus intervention increased cli-
mate policy support by 9% in Romania but decreased it by 5% in 
Canada. The binding moral foundations intervention increased the 
number of trees planted by Australians under the age of 40 by 40%, 
and by Gambians by 35%, but this intervention decreased the number 
of trees planted by wealthy Japanese participants by 24%. These results 
can inform the development of local intervention strategies, which 
should then be empirically validated. Critically, these results also bol-
ster the message that interventions need to be tailored to the charac-
teristics of the target audience, nationality being an important factor. 
The accompanying data exploration web tool and the open-source 
raw dataset contribute to the data-as-public-good trend emerging in 
the spirit of open science, thus facilitating the testing of additional 
hypotheses and advancement of science.

In a linked forecasting experiment (46), academics (e.g., behav-
ioral scientists) and the general public were asked to predict how 
each intervention would affect belief, policy support, and the tree-
planting behavior in a subset of participants from this study (i.e., 
those from the United States). While academics were better than the 
general public at predicting the efficacy of these interventions on 
beliefs and policy support, when compared to statistical models us-
ing simple heuristics such as “interventions would have no effect,” 
no group was able to accurately predict how interventions would 
affect behavior. These results suggest that our findings here reflect an 
important departure from the expectations within the academic 
community.

There are also several limitations and future directions that 
should be emphasized. First, the sampling procedures differed be-
tween countries (e.g., the U.S. and Israel samples matched the census 
on age, gender, region, ethnicity; and the Norway sample matched 
on age, gender, ethnicity; etc.; Table 1). It should be noted that 73.6% 
of the entire sample was matched for at least one variable. However, 
despite these differences, recent work has found that representative 
samples are not required to obtain generalizable estimates of effect 
sizes within countries (47, 48). Various analyses have highlighted 

that convenience samples are adequate for estimating treatment ef-
fects (49, 50). Hence, given that our paper is primarily concerned 
with the effects of these interventions rather than with estimating 
levels of opinion within each country, our sampling procedures were 
appropriate for the analyses and conclusions drawn here. However, 
while realizing that it will be a challenge, we encourage future work 
to examine these processes using larger, more representative samples 
from an even broader sample of countries.

Second, we leveraged an online survey–based approach, which 
means that we were able to capture a limited set of contextual factors 
that may have influenced our results. This approach was the most 
effective way to measure and compare intervention efficacy in such 
a diverse global sample. However, one important and potentially 
impactful avenue for future research could be to leverage these find-
ings to conduct local field experimentation in targeted samples.

One of the major strengths of our tournament was testing 11 dif-
ferent interventions simultaneously in a large global sample across 
multiple outcomes. Given the heterogeneity in the effectiveness of the 
interventions across the outcomes, future work should likewise pri-
oritize testing promising interventions on even more climate-relevant 
antecedents and outcomes for a more comprehensive assessment of 
climate interventions and their underlying theoretical frameworks. 
One constraint we faced when attempting to test additional theories 
was the decision to not use deception in our interventions. For ex-
ample, descriptive or injunctive norm–based interventions would 
have needed to be based on deception to be included in and deployed 
at this global scale, given the unavailability of the empirical informa-
tion critical to creating these interventions. We hope that the current 
dataset can provide this information for future research in interna-
tional contexts. Future work should also investigate additional 
proenvironmental behaviors, such as investment decisions, activism, 
advocacy, or civic participation, critical to climate change mitigation.

Future research should also assess the processes behind the nega-
tive effects we observed on the tree-planting task. Here, we find evi-
dence for a trade-off between time spent on the intervention and in 
the behavioral task, but additional processes may also be at play. For 
instance, the negative effects observed might suggest a negative 
spillover process, by which increasing some mitigation actions (e.g., 
policy support, social media sharing, etc.) could have decreased 
other mitigation actions (e.g., contributing to tree planting). Given 
that the tree-planting task was also the last outcome variable com-
pleted by participants, such a process could be plausible. However, 
each of the first three outcomes (i.e., climate belief, climate policy 
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Fig. 2. Average effects (i.e., posterior estimates using Bayesian regressions) by intervention for each outcome. Dots indicate the mean, with error bars indicating 
the 94% credible region. Thicker error bars indicate the interquartile range. Vertical lines indicate control average. (A) Belief, (B) support for policy, (C) willingness to share 
climate change information on social media, and (D) number of trees planted in the WEPT. Estimates are reported in tables S1 to S4.
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support, and information-sharing willingness) was positively asso-
ciated with the last outcome (i.e., WEPT; fig. S2 and tables S13 to 
S15). These positive associations at the study level also held within 
each of the 12 conditions (tables  S16 to S18). That is, the more a 
participant supported climate policy, the more trees they planted, a 
pattern found under each condition (table S17). Similarly, partici-
pants who were willing to share climate information on social media 
also planted more trees, again a pattern found under each condition 
(table S18). These positive associations are more consistent with a 
positive spillover.

An alternative explanation for the intervention effects on the 
tree-planting task could be that current behavioral science theories 
and their corresponding interventions are more effective at target-
ing conceptual processes compared to more effortful and time-
consuming behavioral signatures, especially in such a heterogeneous 
global sample. However, another explanation could be that inter-
ventions that made the negative consequences of climate change 
more salient (e.g., negative emotions, decreasing in psychological 
distance, and future self-continuity), triggered the perception that 

individual-level solutions (e.g., planting trees) may be futile in the 
face of such an insurmountable phenomenon, in line with the 
learned helplessness hypothesis (45). On the other hand, perhaps, a 
combination of these explanations gave rise to the effects observed. 
Future research is needed to clarify these processes and identify in-
terventions that increase more effortful climate actions around the 
world, as well as actions that are more effective solutions to the cli-
mate crisis (30).

Last, while, in this global study, we tested the effects of several 
theoretically derived behavioral interventions on people’s beliefs and 
actions in the context of climate change, our findings provide mean-
ingful insights to the broader fields of social and behavioral sciences. 
For instance, the average global effects of the interventions tested 
ranged from effectively zero to very small in the conceptual out-
comes (beliefs and policy support) and near zero to negative in the 
behavioral outcome (tree planting). These findings point to critical 
limitations in these theories’ utility and generalizability beyond the 
contexts in which they were developed. The most extreme example is 
the correcting pluralistic ignorance intervention, which had no 
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effect on beliefs, policy support, or willingness to share information 
on social media and even reduced tree-planting efforts. Theories are 
often tested and evaluated mainly on their ability to account for de-
contextualized patterns of data in laboratory settings, rather than 
their ability to help solve societal problems (51). In response to this 
limitation, researchers have recently proposed reverting the scien-
tific paradigm to an impact-oriented theoretical and empirical re-
search agenda (30).

The small effect sizes we observed in this global sample might 
also be partly interpreted through the lens of recent work reporting 
that over 60% of studies in the most prestigious journals in psychol-
ogy have only focused on 11% of the world’s population (52). In our 
data collected in the United States or other WEIRD nations, the 
effects of the top interventions on belief and policy support were 
much stronger than at the global level. The skewed representation 
in the field may pose another notable obstacle in addressing societal 
problems that depend on global cooperation and a diversity of solu-
tions for different cultural contexts, as is the case in climate change 
among numerous others global crises. One promising solution to 
these generalizability and practicality limitations in the behavioral 
sciences relies on embracing international collaborative science. 
Large global scientific projects can benefit from access to not only a 
wider range of populations but also from a diversity of scientific 
perspectives. For example, crowdsourcing has been found to 

improve the quality of scientific investigations by promoting ide-
ation, inclusiveness, transparency, rigor, and reliability among oth-
er factors (25). Thus, crowdsourcing decisions related to the 
experimental design from experts more widely representative of the 
global scientific community might increase the impact and general-
izability of scientific investigations. For example, the crowdsourc-
ing of the theories tested from our large international team has led 
us to include less established interventions, such as “letter to future 
generation,” which ended up being one of the top interventions 
tested. Future work could also consider extending this crowdsourc-
ing paradigm to include nonexperts (e.g., lay audiences), as recent 
work suggests that there may be unique benefits (e.g., increased in-
terdisciplinarity), sometimes even producing research questions 
that outperform experts’ suggestions (53). Last, combining this 
“many labs” approach (24) with the megastudy approach (18) 
promises to push the limits of conventional scientific practices and 
overcome some of the main barriers of science generalization and 
implementation (17).

Overall, we tested the effectiveness of 11 expert-crowdsourced 
behavioral interventions at increasing climate awareness and action 
in 63 countries. Our findings provide theoretical support for many 
of the tested interventions. However, variation in effectiveness 
across outcomes, between countries, and along the spectrum of cli-
mate beliefs, suggests substantial gaps in our current theoretical 

Fig. 4. Country-level means of each outcome variable. Countries without available data are shown in gray. Statistics are shown in tables S5 to S8. (A) Climate change 
belief, (B) policy support, (C) sharing information on social media, and (D) trees planted via the WEPT.
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understanding of climate change behavior. Moreover, the high pre-
existing levels of belief and policy support, alongside the small ef-
fect sizes observed here, raise critical questions about the practical 
capacity to facilitate bottom-up change at a global level, suggesting 
that top-down change might need to be prioritized to achieve the 
emissions reduction necessary to stay within safe planetary limits 
for human civilization. Practically, these findings provide critical 
information to policymakers considering climate solution imple-
mentations, streamlining the behavioral sciences’ response to the 
climate crisis.

MATERIALS AND METHODS
Participants
The data were collected between July 2022 and July 2023 (see “note 
added in proof ”). A total of 83,927 completed the study. Of them, 
59,440 participants (Mage = 39.13, SDage = 15.76; 50% women and 
46% men) from 63 countries (Fig. 5 and Table 1) who passed the two 
attention checks (i.e., “Please select the color “purple” from the list 
below” and “To indicate you are reading this paragraph, please type 
the word sixty in the text box below”) and correctly completed the 
WEPT demo were included in the analyses. Although removing 
participants who failed these preregistered attention checks risks 
contributing to a selection bias in the sample (54), we a priori deter-
mined we would screen participants according to these criteria to 
ensure data quality.

Ethics approval was obtained independently by each data collec-
tion team from their corresponding Institutional Review Board. 
Only datasets submitted along with Institutional Review Board ap-
proval were included in the analysis.

Collaboration procedure
Following procedures from Van Bavel and colleagues (24), the orga-
nizational team submitted a call for collaboration (https://manylab-
sclimate.wordpress.com/call-for-collaboration/) in November 2021 
on social media (i.e., Twitter), via personal networks and by posting 
on various mailing lists. We asked researchers from around the world 
to join our project by contributing in one of three ways: (i) collecting 
data (i.e., >500 responses) from a country in which data had not al-
ready been collected, (ii) propose an intervention that becomes in-
cluded in the final study, and/or (iii) fund data collection (i.e., >500 
responses) from a country in which data had not already been col-
lected and support a local team who lacks funding. The collaborators 
who proposed an intervention were asked to keep in mind time con-
straints (i.e., each intervention had to take on average at most 5 min) 
and the targeted outcome variables (i.e., climate beliefs, policy sup-
port, social media sharing, and tree-planting contributions). We re-
ceived a total of 36 proposed interventions, which were coded by the 
first authors (who were blinded to the intervention authors). The cod-
ing procedure involved screening the proposed interventions for fea-
sibility in an international context, relevance for the dependent 
variables, and theoretical support from prior work (quantified by pre-
viously reported effect sizes). We also aggregated similar interven-
tions and duplicates. Following this procedure, we identified 11 
unique and feasible interventions, which we then asked all collabora-
tors to rate on perceived efficacy (practical support) and theoretical 
value (theoretical support), initially aiming to select the top five inter-
ventions. We obtained 188 responses from our collaborators in Janu-
ary 2022 (fig.  S5). Given high support for all interventions, we 

decided to test all 11 interventions in the main study. We then con-
tacted the collaborators whose interventions had been selected to 
be included in the main study, to coordinate the intervention imple-
mentation and programming on the Qualtrics survey platform (www.
qualtrics.com/). After obtaining the programmed interventions, we 
gave our collaborators feedback on their submissions and allowed 
them time to address our comments. After receiving the revised 
interventions, we contacted expert researchers who had published 
theoretical work relevant to each intervention, asking them to criti-
cally review each intervention’s implementation. For example, Jost 
(55) reviewed the system justification intervention, and van der 
Linden et  al. (56) reviewed the scientific consensus intervention. 
This process was iterated for each of the 11 interventions. After 
receiving critical suggestions from these experts, we engaged in 
another round of revisions. Last, in an attempt to reduce American-
centric researcher biases, we asked all collaborators from around 
the world for additional feedback on the entire survey, including 
all interventions, demographics, and independent variables. This 
process lasted until the end of May 2022, when we started piloting 
the final version of the study, on a sample of 723 participants 
(Mage = 43.6; SDage = 15.7; 52% women and 46% men, <2% nonbi-
nary), collected in the United States. Using the pilot data, we wrote 
our analysis scripts and the preregistration (available at https://
aspredicted.org/blind.php?x=W83_WTL). After the piloting was 
completed (July 2022), we sent our collaborators the final version of 
the study in Qualtrics along with an in-depth instructions manual 
(https://osf.io/ytf89/files/osfstorage/6454f8e3b30b49156cb9
dd79/) on how to translate and adapt the study to each country. We 
also instructed our collaborators to obtain ethics approval from 
their International Review Boards before launching data collection. 
All collaborators were given 10 months (until May 2023) to submit 
their data.

Experimental design
Participants signing up to complete the study (expected to take 
15 min to complete) were first asked to read and sign the informed 
consent. They were then exposed to the first attention check (“Please 
select the color “purple” from the list below. We would like to make 
sure that you are reading these questions carefully.”), which removed 
from the experiment any participants choosing an incorrect answer. 
Then, participants were then given a definition of climate change: 
“Climate change is the phenomenon describing the fact that the 
world’s average temperature has been increasing over the past 
150 years and will likely be increasing more in the future.” After read-
ing this definition, participants were randomly assigned to 1 of 12 
conditions: 11 experimental interventions (Fig. 1) or a no interven-
tion control condition, in a between-subjects design. Participants un-
der the control condition were then exposed to a short, thematically 
unrelated text from the novel Great Expectations by Charles Dickens, 
while participants under the experimental conditions were exposed 
to an intervention. Then, all participants were directed to the out-
come variable phase, in which they rated (in random order) their (i) 
climate beliefs, (ii) climate policy support, and (iii) willingness to 
share climate information on social media. Last, participants were 
given the chance to contribute to tree-planting efforts by completing 
the WEPT. Then, participants under the control condition were 
asked to complete an additional set of variables. Last, all participants 
were asked to fill out a series of demographic variables, which in-
cluded another attention check (“In the previous section, you viewed 
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some information about climate change. To indicate you are reading 
this paragraph, please type the word sixty in the text box below.”). 
Notably, participants filled out the entire survey in the primary lan-
guage of their country of residence.

Outcome variables
Climate beliefs
Climate beliefs were measured by participants’ answer to the ques-
tion “How accurate do you think these statements are?” from 
0 = not at all accurate to 100 = extremely accurate. The four state-
ments were as follows: “Taking action to fight climate change is nec-
essary to avoid a global catastrophe,” “Human activities are causing 
climate change,” “Climate change poses a serious threat to humanity,” 
and “Climate change is a global emergency.” The Cronbach’s alpha 
measure of internal consistency of this four-item scale in this data-
set was 0.934.
Climate policy support
This dependent variable consisted of participants’ level of agreement 
from 0 = not at all to 100 = very much so, with the following nine 
statements: “I support raising carbon taxes on gas/fossil fuels/coal?,” 
“I support significantly expanding infrastructure for public trans-
portation,” “I support increasing the number of charging stations for 
electric vehicles,” “I support increasing the use of sustainable energy 
such as wind and solar energy,” “I support increasing taxes on airline 
companies to offset carbon emissions,” “I support protecting forest-
ed and land areas,” “I support investing more in green jobs and busi-
nesses,” “I support introducing laws to keep waterways and oceans 
clean,” and “I support increasing taxes on carbon intense foods (for 
example meat and dairy).” The Cronbach’s alpha measure of internal 
consistency of this nine-item scale in this dataset was 0.876.
Social media sharing
Participants were first presented with the text, “Did you know that 
removing meat and dairy for only two of three meals per day could 
decrease food-related carbon emissions by 60%? It is an easy way to 
fight #ClimateChange #ManyLabsClimate${e://Field/cond} source: 
https://econ.st/3qjvOnn” (where “{e://Field/cond}” was replaced 
with the condition code for each group). Participants were then 
asked “Are you willing to share this information on your social me-
dia?,” the answer options being “Yes, I am willing to share this infor-
mation,” “I am not willing to share this information,” and “I do not 
use social media.” Participants who indicated that they do not use 
social media were excluded from this analysis (i.e., a third of the 
sample). Moreover, participants were asked to indicate the platform 
(e.g., Facebook, Twitter, and Instagram) on which they posted the 
information.
WEPT tree-planting efforts
To measure an action with a real-world impact performed at an ac-
tual cost to participants, we used a modified version of the WEPT 
(37). This task is a multitrial web-based procedure that detects con-
sequential proenvironmental behavior by allowing participants the 
opportunity of engaging in voluntary cognitive effort (i.e., screen 
numerical stimuli) in exchange for donations to an environmental 
organization. This measure has been validated and has been found 
to correlate with well-established scales for the assessing proenvi-
ronmental behavioral intentions (e.g., general ecological behavior 
scale) (57) and with direct donation behaviors (e.g., the donation of 
a part of their payment to an environmental organization) (39).

Participants were first exposed to a demonstration of the WEPT, 
in which they were instructed to identify all target numbers for 

which the first digit is even and the second digit is odd (4 of 18 num-
bers were target numbers on the demonstration page). Participants 
were not allowed to advance the page until they correctly completed 
the WEPT demonstration. Then, they were told that planting trees is 
one of the best ways to combat climate change and that they would 
have the opportunity to plant up to eight trees if they chose to en-
gage in additional pages of the item identification task (one tree per 
page of WEPT completed). These pages contained 60 numbers per 
page, where participants had to screen for target numbers. Along-
side these instructions, participants were shown a pictogram of 
eight trees, one of which was colored green to mark their progress in 
the task. Participants were allowed to exit the task at any point with 
no penalty.
Demographics
Participants were asked to indicate their gender, age, education lev-
el, political orientation for economic and social issues, and house-
hold income.

Experimental conditions (interventions)
Working-together norms
The working-together norms intervention was submitted by 
M. Vlasceanu and J. Van Bavel. This intervention was adapted from 
Howe et al. (11), and it combines referencing a social norm with an 
invitation to work with others toward a common goal. This working-
together normative appeal invites people to join in and “do it to-
gether” and has been found to increase interest in and actual 
charitable giving, reduce paper-towel use in public restrooms, and 
increase interest in reducing personal carbon emissions (11). Me-
diation analyses in prior work also suggested that working-together 
normative appeals are effective because they foster a feeling in par-
ticipants that they are working together with others, which can in-
crease motivation while reducing social pressure. Participants under 
this condition were exposed to a flier adapted from Howe and col-
leagues (11), after which they were asked 15 questions about the fli-
er, serving as manipulation checks that were also meant to reinforce 
the manipulation [e.g., “If you are taking steps toward reducing your 
carbon footprint, to what extent would you feel like you are doing so 
together with other Americans (or participants’ group, adapted for 
each country)?” on a scale from 0 = not at all to 100 = extremely or 
“How strongly do you identify with your fellow Americans (or par-
ticipants’ group, adapted for each country)?” on a scale from 0 = not 
at all to 100 = extremely].
System justification
SThe sstem justification intervention was submitted by O. Buchel, 
M. Tyrala, and A. Findor. This intervention is situated at the inter-
section of social identity, collective narcissism, and system justifica-
tion approaches [based on (58)] and consists of framing climate 
change as uniquely threatening the way of life of participants’ na-
tionality (e.g., the American way of life). Participants were asked to 
read a text emphasizing the importance of nature and the environ-
ment to one’s life [e.g., “(..) the food you eat, the sports you enjoy, the 
customs you observe, how you spend your free time, or even how 
you imagine growing old, all are likely impacted by where you live”], 
followed by examples of the effect of climate change on the local 
environment of participants’ nation [e.g., “(..) we can already see the 
consequences of climate change in the United States. For example, 
floods are becoming more and more frequent, putting a quarter of 
Americans at risk of losing their homes. Similarly, wildfires are be-
coming more frequent and more intense, threatening millions of 
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Americans.”]. The text ends with an appeal to being proenviron-
mental as a patriotic gesture that will protect one’s way of life (e.g., 
“Being proenvironmental allows us to protect and preserve the 
American way of life. It is patriotic to conserve the country’s natural 
resources. It is important to protect and preserve our environment 
so that the United States remains the United States.”). This narrative 
was also intertwined with representative images of participants’ 
country of residence.
Binding moral foundations
The binding moral foundations intervention were submitted by 
B. Douglas and M. Brauer. This intervention relies on evoking 
ingroup-loyalty and authority moral foundations, which has been 
shown to increase support for proenvironmental behavior and atti-
tudes (59, 60). Participants were asked to read the following text 
“We are Americans (or participants’ nationality, adapted for each 
country). This means we can rise to any challenge that faces our 
country. From scientists to experts in the military, there is near uni-
versal agreement that climate change is real. The time to act is now. 
Using clean energy will help to keep our air, water, and land pure. It 
is the American (or participants’ nationality, adapted for each coun-
try) solution to the climate crisis,” after which they were exposed to 
an image of a person holding the national flag of participants’ coun-
try of residence.
Exposure to effective collective action
The exposure to effective collection action intervention was submit-
ted by E. Shuman and A. Goldenberg. This intervention features 
examples of successful collective action that have had meaningful 
effects on climate policies, building on prior work showing that ex-
posure to nonviolent action can increase willingness to join and 
maintain support (61, 62). In addition, prior work also found that 
highlighting the possibility of making real concrete changes through 
collective action can increase hope, efficacy, and collective action 
(61). Participants were exposed to a text explaining that the impact 
people’s actions can have on curbing the effects of climate change, 
citing research indicating there is still “a window of opportunity” to 
make a difference. Then, participants were informed that the effec-
tiveness of people’s actions to fight climate change depends on their 
ability to “come together and demand systemic change.” Participants 
were then exposed to several successful examples in which people 
solved global issues, such as the restoration of the ozone layer in 

1987. Then, participants were exposed to examples of climate activ-
ism initialized by individual people and leading to large-scale move-
ments or policy implementation (e.g., protests by locals from the 
American Midwest against fossil fuels pressured the governors of 
Illinois, Indiana, Michigan, Minnesota, and Wisconsin to build a 
new network for charging electric vehicles.). Images of concepts de-
scribed in the text were displayed throughout.
Future self-continuity
The future self-continuity intervention was submitted by V. Ponizovskiy, 
L. Grigoryan, S. Grelle, and W. Hofmann. This intervention consists of 
emphasizing the future self that has been found in prior work to moti-
vate future-oriented behaviors, such as academic performance, ethical 
decision making, and proenvironmental behavior (63–65). Participants 
were asked to read a text emphasizing the importance of engaging in 
climate action [i.e., “If no changes are made, the average temperature 
can increase by up to 6.5°C (12 F) by the year 2100 (IPCC, 2022). This 
would be extremely dangerous as super hurricanes, gigantic wildfires, 
and extreme food, and water shortages would become commonplace.”]. 
They were then presented with a series of causes for this phenomenon 
(i.e., “Human behaviors like energy production from fossil fuels, exces-
sive meat consumption, and car driving increase the concentrations of 
greenhouse gasses in Earth’s atmosphere. Over 90% of the increase in 
the world’s temperature is caused by human activity.”). Last, partici-
pants were asked to imagine that their 2030 self is writing a letter to 
their present self, in which their future self is describing the actions they 
would have wanted to take regarding climate change [i.e., “Please put 
yourself in the year 2030—8 years from now. Take a few moments to 
imagine your life in that future. Imagine how you will look, where you 
will be, and who you are with. In the year 2030, it will be clear whether 
keeping climate change under 2°C is still possible. It will be clear wheth-
er the necessary change occurred fast enough to match the speed of the 
changing climate. As the Earth’s atmosphere continues to heat up, the 
effects of climate change will be more apparent: The “highest observed 
temperature” records will keep being updated, heatwaves and the 
draughts will become more common, species will continue to become 
extinct. Now please write yourself a “letter from the future.” This should 
be a letter you are writing in the year 2030, to your past self. As the 
person that you will be in 2030, what role would you think would be 
appropriate for you in respect to climate change? What would you want 
to tell yourself in the past? What would you like your past self to do? 
Please spend a bit of time on this task and try to write at least 100 words 
(five sentences), or more, if possible.”].
Scientific consensus
The scientific consensus intervention was submitted by A. van Stekelenburg, 
C. Klöckner, S. Vesely, and D. Bleize. This intervention consists of 
a message suggesting that climate scientists are in agreement with 
each other that climate change is real and primarily caused by hu-
man action. This messaging has been found to increase people’s be-
lief in climate change and support for climate mitigation policy (56, 
66). Participants were exposed to the following text “Did you know 
that 99% of expert climate scientists agree that the Earth is warming 
and climate change is happening, mainly because of human activity 
(for example, burning fossil fuels)? [Myers et al. (67), Environmen-
tal Research Letters; Lynas et al. (68), Environmental Research Let-
ters; Doran and Zimmerman (69), EOS]”. The text was accompanied 
by a pie chart with 99% of the surface area shaded.
Decreasing psychological distance
The decreasing psychological distance intervention was designed by 
S. Chamberlain, D. Hine, and G. Huang. This intervention is based 

Fig. 5. The number of participants in each of the 63 countries represented in 
the sample (Ntotal = 59,440). 

D
ow

nloaded from
 https://w

w
w

.science.org on February 10, 2024



Vlasceanu et al., Sci. Adv. 10, eadj5778 (2024)     7 February 2024

S c i e n c e  A d va  n c e s  |  R e s e ar  c h  A r t i c l e

13 of 19

on prior work finding that many perceive climate change as psycho-
logically distant (i.e., “as a set of uncertain events that may occur far 
in the future, impacting distant places and affecting people dissimi-
lar to themselves”) (10). Thus, framing climate change as a psycho-
logically proximal risk issue (e.g., geographic) is expected to reduce 
psychological distance and increase public engagement. Participants 
were exposed to a paragraph emphasizing the impact of climate 
change (i.e., “There is no doubt that humans are the main driver of 
climate change. Human influence has warmed the atmosphere, 
ocean, and land. Climate change is already affecting every region 
across the world. It has resulted in more frequent and intense ex-
treme weather events, causing widespread harm and damage to 
people, wildlife, and ecosystems. Human systems are being pushed 
beyond their ability to cope and adapt.”). They were then exposed to 
two examples of recent natural disasters caused by climate change in 
participants’ region (e.g., U.S. participants will be exposed to infor-
mation about the 2021 record-breaking heat wave in North America 
causing the Lytton wildlife and to information about the 2017 Hur-
ricane Harvey in Texas and Hurricane Irma in Florida, killing 232 
people and causing $175 billion in damage). Participants were then 
asked to select the aspects of their lives affected by climate change 
from a list including: food production, farming and crop produc-
tion, health and wellbeing, infectious disease, heat related harm and 
deaths, lack of, mental health issues, flooding and storms, changed 
land, freshwater and ocean environments, damaged infrastructure, 
and economy. After making the selections, participants were pro-
vided the correct answers based on current scientific estimates (i.e., 
all the possible options). Last, participants were asked to write about 
how climate change will affect them and their community (i.e., 
“Please write in a few sentences: How those climate consequences 
will affect you, your friends and family, and your community. Try to 
imagine these things happening today so you can be specific and 
describe what it will be like.”).
Dynamic social norms
The dynamic social norms intervention were submitted by 
O. Genschow, D. Loschelder, G. Sparkman, and K. C. Doell). This 
intervention is based on work showing that dynamic norms (i.e., 
how other people’s behavior is changing over time) are even more im-
pactful at changing behavior than static social norms (70). Participants 
in this intervention first read a paragraph emphasizing that “People in 
the United States and around the world are changing: More and more 
people are concerned about climate change and are now taking action 
across multiple fronts,” accompanied by an image featuring relevant 
data in support of this claim. Then, participants were given examples of 
actions people are starting to take to mitigate the changing climate [i.e., 
“Since 2013, concerns about climate change have increased in most 
countries surveyed. What kinds of actions are people taking right now? 
More than ever before, people are making changes to their lifestyles, 
supporting policies to address climate change, and are giving the issue 
more time and attention. For example, more and more people from 
around the world are now cutting back on personal consumption, es-
pecially meat and dairy products, spending time, effort, and money on 
initiatives to mitigate climate change (for example, planting trees, off-
setting carbon emissions), switching to low carbon modes of transpor-
tation (for example, taking bicycles). There’s also been a notable increase 
in support for climate change mitigation policy—some of the most 
popular policies include attempting to conserve forests and land, tran-
sitioning to solar, wind, and other renewable energy sources, creating/
raising carbon taxes on fossil fuels, coal, gas, etc.”].

Correcting pluralistic ignorance
The correcting pluralistic ignorance intervention was submitted by 
M. Schmitt, A. Lutz, and J. Lees. This intervention builds on work 
reporting that people substantially underestimate the climate change 
concern of others, a phenomenon labeled as “pluralistic ignorance” 
(71). Accordingly, collective action might be limited by people’s 
misperception that not many people are concerned. This interven-
tion presented real public opinion data, which show that majorities 
around the world are concerned about climate change. Participants 
were first asked to predict the percent of people in their country who 
hold the belief that climate change is a global emergency [i.e., Re-
searchers recently conducted the “People’s Climate Vote,” which is 
the World’s largest survey of public opinion on climate change 
(“global warming”). A total of 1.2 million people completed the sur-
vey from 50 different countries around the globe. The survey in-
cluded people from the United States. Think for a moment about 
Americans and their views on climate change. How many Ameri-
cans do you think would agree with the statement “Climate change 
is a global emergency”?]. After providing a prediction, participants 
were shown the actual percentage of people in their country who 
hold the belief in question, according to the Peoples’ Climate Vote 
(72). For example, participants in the United States will be told that 
“The People’s Climate Vote found that 65% of Americans agree that 
climate change is a global emergency”. For countries where the Peo-
ple’s Climate Vote does not report national level results, participants 
were presented with the climate opinion of people in their region.
Letter to future generations
The letter to future generations intervention was submitted by 
S. Syropoulos and E. Markowitz. This intervention involves writing 
a letter to a member of the future generation, which has been shown 
to reduce the psychological distance between one’s current choices 
and their consequences on future generations (73, 74). Participants 
were asked to write a letter to a child who will read it in the future 
[i.e., “Please think of a child that is currently less than 5 years old (..) 
Now imagine that child is a 30-year-old adult. It is approximately 
the year 2055, they have started a family of their own, and they are 
finding their own way in the world. Whether they recognize it or 
not, they live in a world that is powerfully shaped by the decisions 
we are all making now, in 2022. One day, (..) they find a letter writ-
ten today, in 2022, which is a message from you.”]. In this letter, 
participants are encouraged to write about their actions toward en-
suring an inhabitable plant (i.e., “In it, you tell this family about all 
of the things you have done and want to do in the future to ensure 
that they will inherit a healthy, inhabitable planet. You tell them 
about your own personal efforts—however small or large—to con-
front the complex environmental problems of your time, from 
habitat loss to water pollution to climate change. In this letter, you 
also tell this family in 2055 about how you want to be remem-
bered by them and future generations as someone who did their 
best to ensure a safe, flourishing world.”). Participants were al-
lowed to write for 3  min and encouraged to write at least 100 
words or 5 sentences.
Negative emotion
The negative emotion intervention was submitted by K. Doell and 
C. Pretus. This intervention involves exposure to scientific facts re-
garding the impacts of climate change in a doom and gloom mes-
saging style typically used by climate communicators to induce 
negative emotions as a way of stimulating mitigation behaviors (45). 
Participants were first asked to report their baseline levels of emotions 
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related to climate change, (e.g., hopeful, anxious, depressed, scared, 
indifferent, angry, helpless, and guilty). They were then exposed to 
information about the consequences of climate change alongside 
representative images [e.g., “Climate change is happening much 
more quickly and will have a much greater impact than climate sci-
entists previously thought, according to the latest report by the In-
tergovernmental Panel on Climate Change (IPCC, 2022). If your 
anxiety about climate change is dominated by fears of starving polar 
bears, glaciers melting, and sea levels rising, you are barely scratch-
ing the surface of what terrors are possible, even within the lifetime 
of a young adult today. And yet the swelling seas—and the cities 
they will drown—have so dominated the picture of climate change/
global warming that they have blinded us to other threats, many 
much closer at hand and much more catastrophic (...)”]. Last, par-
ticipants were asked to report their levels of emotions related to cli-
mate change again.

Control condition
Participants in the control condition were instructed to read a text 
retrieved from the novel Great Expectations by Charles Dickens [i.e., 
“As soon as the great black velvet pall outside my little window was 
shot with gray, I got up and went downstairs; every board upon the 
way and every crack in every board calling after me (…) I took it in 
the hope that it was not intended for early use and would not be 
missed for some time.”]. Participants were required to spend at least 
10 s reading this text. This was to ensure that participants exerted 
some level of cognitive effort before being exposed to the dependent 
variable phase, to mirror the experience of participants in the ex-
perimental conditions. We chose a fiction text to prevent priming 
participants in any relevant way that could influence the dependent 
variables. After reading the excerpt, participants under the control 
condition were directed to the dependent variable phase, followed 
by the demographics phase. Last, participants under the control 
condition were also directed to an additional independent variable 
phase, exclusive to participants under this condition.

Additional variables collected
These variables were only displayed to participants under the control 
condition, after they completed all dependent variables. First, partici-
pants were asked to rate the competence of climate scientists (“On aver-
age, how competent are climate change research scientists?” on a scale 
from 0 = not at all to 100 = very much so), their trust in scientific re-
search about climate change (“On average, how much do you trust sci-
entific research about climate change?” on a scale from 0 = not at all to 
100 = very much so), their trust in their government (“On average, how 
much do you trust your government?” on a scale from 0 = not at all to 
100 = very much so), their attitudes toward human welfare (“To what 
degree do you see yourself as someone who cares about human wel-
fare?” on a scale from 0 = not at all to 100 = very much so), their global 
citizenship identity (“To what degree do you see yourself as a global 
citizen?” on a scale from 0 = not at all to 100 = very much so), their 
environmental identification (e.g., “To what degree do you see yourself 
as someone who cares about the natural environment?” on a scale from 
0 = not at all to 100 = very much so), and their extrinsic environmental 
motivation (e.g., “Because of today’s politically correct standards, I try 
to appear proenvironmental.” on a scale from 0 = strongly disagree to 
100 = strongly agree). Then, they were asked to estimate the percentage 
of people in their country who believe that climate change is a global 
emergency.

Statistical methods
Our dependent variables have distributional properties (fig. S6) that 
preclude unbiased estimation with common, off-the-shelf, regres-
sion tools (such as the preregistered analyses). To address this, esti-
mates presented in Fig. 2 relied on Bayesian methods and custom 
likelihood functions. Full mathematical descriptions of all models 
can be found in the supplied code (https://github.com/josephbb/
ManyLabsClimate). Additional analyses can be found at https://
github.com/mvlasceanu/ClimateTournament.

Belief was estimated using a hierarchical Zero-One-Inflated Beta 
(ZOIB) model. This model was further used to derive adjusted 
participant-level estimates of preintervention belief, to avoid post
intervention bias in subsequent models. Sharing on social media 
was evaluated with a logistic regression. For WEPT, we used a geo-
metric regression with a customized likelihood function to account 
for truncation and overinflation for the maximum number of trees 
planted. Priors were selected using prior-predictive simulation, 
with model structure iteratively developed through analysis of the 
prior predictive distribution and validated through model compari-
son using posterior predictive simulation. Posteriors were sampled 
using a No-U-Turn Sampler implemented on a graphics process-
ing unit (GPU) with PyMC/NumPyro.

We note that these modeling choices are different from our 
preregistered analysis, which specified linear (belief and policy), 
ordinal (WEPT), and logistic (sharing) mixed-effects models. Plots 
of residuals from preregistered models suggested moderate to 
severe violations of distributional assumptions. For this reason, 
P values and estimates of effect sizes for these models may be unre-
liable. Despite these issues, we note that the findings from preregis-
tered analyses are qualitatively similar to those from the Bayesian 
analyses. Overall, similarities between the preregistered and Bayes-
ian analyses suggest effects that are remarkably robust to analy-
sis decisions.

For completeness, we include the results as preregistered in 
tables S9 to S12 and fig. S1. Belief and policy support were mod-
eled using a linear mixed-effects model with climate policy sup-
port as the dependent variable, condition as the fixed effect, 
including item (nine policies), participant, and country as ran-
dom effects. WEPT was modeled using an ordinal mixed-effects 
model with climate action (WEPT) as the dependent variable 
and condition as the fixed effect, including country as random 
effects. Sharing was modeled using an ordinal mixed-effects 
model with climate action (WEPT) as the dependent variable 
and condition as the fixed effect, including country as random 
effects.

To develop and evaluate our Bayesian models, we adapted an 
established Principle Bayesian Workflow (75). This process begins 
by identifying inference goals, domain knowledge, and features of 
the dataset. Candidate statistical models are proposed, with prior 
predictive checks that are used to identify reasonable priors. Data 
are simulated from the prior predictive distribution, and the sta-
tistical model is fit to this simulated data. This allows for evalua-
tion of computational properties of the model, tuning of the 
sampler, adjustment of the model or priors, and refinement. Key 
insight was gained through visual inspection of the posterior z-
score versus posterior contraction, which can indicate issues with 
overfit, underfit, bad prior models, or poorly identified model 
specification. This process was iterated on until a suitable candi-
date model and priors were identified. Last, posterior predictive 
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checks were used to verify that models adequately reconstructed 
broad properties of the data without regard to the estimands of 
interest (i.e., country/treatment effects). Failures here lead to 
adjustment of the underlying model. Once all model develop-
ment criteria were satisfied, final analysis of the dataset was 
used to generate estimates of treatment and country level effects 
as well as all relevant figures. We note that priors for similar 
parameters across models may differ as a result of this iterative 
process, owing to distinct link functions and differing computa-
tional constraints. However, the impact of the prior on posterior 
samples is unlikely to be meaningful, given the volume of data.

We fit the selected model to the study data using PYMC (76) 
with a No U-Turn Sampler implemented on the GPU in NumPy-
ro. We evaluated the model fit, ensuring the absence of diver-
gent transitions, sufficient mixing of the (four) Markov chains, a 
large enough effective sample size, and an acceptable Estimated 
Bayesian Fraction of Missing Information. Last, data were simu-
lated from the posterior distribution and visual inspection of 
these posterior retrodictive checks that were used to assess 
model fit. Sampling parameters were largely default and can be 
found in the supplied code.
Belief
Belief was indicated for four items on a scale from 0 to 100, in-
clusive. We scaled the outcome variable for each item to 0 to 1 to 
facilitate the use of common bound distributions. However, as 
both 0 and 1 were possible values, our likelihood function need-
ed to account for possible inflation. Hence, we implemented a 
hierarchical ZOIB regression. We developed a generative model 
in which participants were estimated to have an unobserved 
preintervention belief, defined by their observed belief minus 
the estimated preintervention effect for their level of belief (i.e., 
as though they had been in the control condition) that was par-
tially pooled by country, which, in turn, was partially pooled via 
a hyperparameter for average belief. Interventions were mod-
eled with an intercept, corresponding to the average effect, and 
an effect of the estimated preintervention belief. The interven-
tion effect and intercept for the control condition were fixed at 
zero. Otherwise, we modeled intervention effects using a multi-
variate normal distribution to account for covariance between 
intercepts and interventions. Further, we included partially 
pooled intercepts for item-specific effects. Where necessary, 
noncentered parameterizations were used to improve model fit.

Last, we extracted the posterior average preintervention be-
lief for each participant to use in modeling policy support, so-
cial media sharing, and WEPT. This reflects the observed level 
of belief after adjusting for intervention effects on belief. As the 
treatment effects are small, these adjustments are minimal. Ide-
ally, one would jointly model belief and other outcomes; how-
ever, the large sample sizes inherent to a megastudy impose 
computational constraints, a particular issue with model devel-
opment and evaluation. Extracting intervention-adjusted esti-
mates of initial belief enables us to examine heterogeneous 
intervention effects for each of these outcomes, at a tractable 
degree of model complexity. We chose to focus on belief for 
evaluating heterogeneous intervention effects under the as-
sumption that belief is more likely to be a cause of support for 
policy, social media sharing, and investment in tree-planting 
activities than a consequence. Full mathematical descriptions of 
the model can be found in the supplied code.

Policy support
Support for policy was indicated for nine items on a scale from 0 to 
100, inclusive. Because of computational constraints with the full data-
set, we examined the average of these items. As with belief, this out-
come was scaled from 0 to 1, and a ZOIB was used to model the data. 
Policy support was modeled with an intercept, an effect of adjusted 
belief, with intercept and belief effects modeled for interventions and 
countries. Intervention and country effects were modeled as separate 
zero-centered normal distributions.
Social media sharing
Sharing was a binary outcome, restricted to users who used social 
media. To analyze the impact on sharing, we relied on a Bayesian 
logistic regression. The probability of sharing was modeled with an 
intercept, an effect of adjusted belief, with intercept and belief effects 
modeled for interventions and countries. Intervention and country 
effects were modeled as separate zero-centered normal distributions.
Work for environmental protection task
Participants were able to plant between one and eight trees. We be-
gan by modeling this as a truncated geometric distribution, assum-
ing that participants have a per–time step chance of giving up and 
are forced to stop at 8. However, we noticed an overabundance of 
planting eight trees consistent with some participants committing to 
planting all eight. Accordingly, we modified our likelihood to in-
clude inflation at eight trees. Posterior predictive fits confirmed ad-
equate model fit. With this likelihood, we constructed a Bayesian 
hierarchical with an intercept, an effect of adjusted belief, and inter-
cepts and belief effects modeled for interventions and countries.

Note added in proof: After this manuscript was accepted for pub-
lication, the authors alerted the editorial office to a paper they re-
cently finalized that includes data used in this paper. This data can 
be found at: K. C. Doell, et al. The International Climate Psychology 
Collaboration: Climate change-related data collected from 63 coun-
tries. (2024). https://doi.org/10.31234/osf.io/7fy2g
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Tables S1 to S25
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sharing, and tree-planting efforts, for any subsample target of interest, varying along 
demographics such as nationality, political ideology, age, gender, education, or income level 
can be found at https://climate-interventions.shinyapps.io/climate-interventions/. All other 
data needed to evaluate the conclusions in this paper are present in the paper and/or the 
Supplementary Materials. 
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