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Obesity has received much attention worldwide in association with an increased risk of cardiovascular diseases, diabetes, and
cancer. At present, bariatric surgery is the only effective treatment for obesity in which long-term weight loss is achieved in patients.
By contrast, pharmacological interventions for obesity are usually followed by weight regain. Although the exact mechanisms of
long-term weight loss following bariatric surgery are yet to be fully elucidated, several gut hormones have been implicated. Gut
hormones play a critical role in relaying signals of nutritional and energy status from the gut to the central nervous system, in
order to regulate food intake. Cholecystokinin, peptide YY, pancreatic polypeptide, glucagon-like peptide-1, and oxyntomodulin
act through distinct yet synergistic mechanisms to suppress appetite, whereas ghrelin stimulates food intake. Here, we discuss the
role of gut hormones in the regulation of food intake and body weight.

1. Introduction

Obesity is one of the major health challenges throughout
the world, due to its association with an array of vascular,
metabolic, and psychosocial complications [1, 2]. Obesity
is traditionally associated with populations in Europe and
North America; however Asian countries such as Japan have
recently reported increasing prevalences of obesity, which
may reflect changes in dietary patterns and lifestyles [3, 4].

Obesity is a state in which energy intake chronically
exceeds energy expenditure. Body weight is tightly regu-
lated by complex homeostatic mechanisms involving the
hypothalamus and brainstem which integrate inputs from
higher cortical centres with peripherally derived signals of
the body’s nutritional and energy status. In the hypothalamic
arcuate nucleus (ARC), there are two neuronal popula-
tions with opposing effects on food intake: neurons which
coexpress neuropeptide Y (NPY) and agouti-related peptide
(AgRP) which stimulate food intake, whereas neurons coex-
pressing proopiomelanocortin (POMC) and cocaine- and
amphetamine-regulated transcript (CART) suppress food
intake (see Figure 1). Within the brainstem, the dorsal vagal
complex (DVC) consisting of the dorsal motor nucleus of
vagus (DVN), area postrema (AP), and the nucleus of the
tractus solitarius (NTS) plays a pivotal role in relaying of

peripheral signals such as vagal afferents from the gut to
the hypothalamus [5]. In human, higher cortical centres
are implicated in psychological and emotional factors which
can drive food intake beyond homeostatic requirements.
In addition, the corticolimbic pathways are responsible for
reward-associated feeding behaviour.

This article summarises our current understanding of the
role of gut hormones in appetite regulation and its potential
as therapeutic targets for obesity.

2. Gastrointestinal Tract

More than 30 gut hormone genes are known to be expressed,
and more than 100 bioactive peptides are distributed in
the gastrointestinal tract, which is thus regarded as the
largest endocrine organ in the body [6]. Meal anticipation
and the presence of food in the upper gastrointestinal tract
stimulate the release of gut hormones and neurotransmitters
from the gut. These neurohumoral signals are involved
in the initiation and maintenance of food intake as well
as termination of meals. The satiating effect of stomach
distension is revealed by observing that infusion of either
saline or nutrients into the rat stomach results in same
reduction in food intake [7]. In humans, the effects of
intragastric balloon insertion on body weight and food
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Figure 1: Humoral signals implicated in the physiological regulation of food intake. Diagram summarising the major signalling pathways
which converge on the hypothalamus and brainstem in order to regulate food intake. ARC, arcuate nucleus; NPY/AgRP, neuropeptide Y
and agouti-related peptide; POMC/CART, proopiomelanocortin and cocaine- and amphetamine-regulated transcript; DVC, dorsal vagal
complex; DVN, the dorsal motor nucleus of vagus; NTS, the nucleus of the tractus solitarius; AP, area postrema; GLP-1, glucagon-like
peptide-1; CCK, cholecystokinin; PP, pancreatic polypeptide; PYY, peptide YY; OXM, oxyntomodulin.

intake are conflicting [8, 9]; this may reflect differences in
the types of balloon used during these studies.

Both meal duration and size are markedly increased
during sham feeding, where ingested food is prevented from
distending the stomach or small intestine by surgical inter-
vention, whereas intraluminal gastrointestinal (GI) infusion
of macronutrient before food access reduces subsequent meal
size in a dose-dependent manner. These findings suggest that
the upper GI tract has an important role in negative feedback
regulation of food intake, and the upper intestine is critical
for nutrient absorption [10]. The vagus nerve is closely
implicated in the transmission of the food-induced negative
feedback signals which are critical for determining meal size.
Transection of all gut sensory vagal fibres results in increased
meal size and meal duration but does not block gastric
preload-induced feeding suppression; this implies that vagal
afferent signals contribute to satiety during spontaneous
meals [10, 11].

Perfusion of nutrients into the colon inhibits upper
gastrointestinal secretion, motility, and transit; this negative
feedback mechanism has been called the “ileal brake” [12].
Fat is the most potent trigger of the ileal brake, and glucagon-
like peptide-1 (GLP-1) and peptide YY (PYY) may be among
the mediators of this phenomenon [13].

3. Bariatric Surgery and Weight Loss

Almost all pharmacological and behavioural treatments for
obesity result in weight loss followed by weight regain [14].
In contrast, gastric bypass surgery is an established and
effective treatment for obesity which provides sustained
weight loss maintenance for at least 15 years [15, 16].

Bariatric surgery may be classified into malabsorptive
surgery and restrictive surgery. Malabsorption-based tech-
niques include the jejuno-ileal bypass, allowing nutrients
to pass directly from the proximal jejunum to the terminal
ileum, and roux-en-Y gastric bypass (RYGB), combining
restrictive and malabsorptive procedures. In some cases, the
former procedure may be associated with severe complica-
tions [17].

Restrictive bariatric surgery involves the laparoscopic
application of an adjustable gastric banding (LAGB). LAGB
procedures result in slightly less weight loss compared with
RYGB but have been reported to be safer [18]. Intriguingly,
the mechanisms of long-term weight loss following bariatric
surgery are yet to be determined; however several gut
hormones have been implicated as contributory factors; a
decrease in ghrelin and an increase in PYY and GLP-1 levels
have been found following bypass surgery [19–21]. Recent
evidence suggests that an increase in energy expenditure may
play a role in part in weight loss after gastric bypass surgery
as an additional factor [22]. Gastric bypass surgery also
improves glycaemic control in patients with type 2 diabetes,
and this often occurs prior to observable weight loss [23].
Thus emulating the altered gut hormone signals associated
with bypass surgery may offer promising novel treatments
for obesity.

4. Gut Microbiota

Recently, a potential link between gut microbiota and
obesity has emerged [24]. The human gut harbours a large
number of bacterial microorganisms collectively termed gut
microbiota. Bäckhed et al. [25] have observed that adult
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germ-free mice had 40% less total body fat than mice with
normal microbiota; furthermore replacing the microbiota in
adult germ-free mice produced a 60% increase in body fat
content and insulin resistance within 14 days of replacement.
In addition, germ-free mice may be protected against high
fat diet-induced metabolic changes [26]. There has also been
considerable interest in the potential benefits of prebiotic
drinks containing bacterial cultures. The study by Cani et al.
[27] evaluated the effect of prebiotics on plasma levels of gut
hormones in healthy subjects. After two weeks of prebiotic
treatment, they observed increased gut microbiota fermenta-
tion, decreased appetite, and improved postprandial glucose
responses. Furthermore plasma levels of GLP-1 and PYY
were increased in subjects following prebiotic treatment.
Current data therefore suggest that gut microbiota may
promote the development of obesity and that manipulation
of gut microbiota using probiotics may alter gut endocrine
function. Further studies are required in order to further
investigate the pathophysiological basis of the association
between gut microbiota and energy homeostasis.

5. Gut Hormones

5.1. PP-Fold Protein. The PP-fold family consists of neu-
ropeptide Y (NPY), peptide YY (PYY), and pancreatic
polypeptide (PP). PYY and PP are secreted from gastroin-
testinal tract, whereas NPY is predominantly distributed
within central nervous system [28]. The members of PP-fold
family act via G protein-coupled receptors: Y1, Y2, Y4, Y5,
and Y6 [29].

5.2. Peptide Tyrosine Tyrosine (PYY). PYY was first isolated as
a 36-amino acid peptide from porcine upper small intestine
[28]. PYY is released by L cells of the distal gut. There are two
circulating forms of PYY: PYY (1–36) and PYY (3–36). PYY
(3–36), the major circulating form, is produced by cleavage
of the N-terminal Tyrosine-Proline residues from PYY (1–
36) by the enzyme dipeptidyl-peptidase IV (DPPIV) [30].
PYY (1–36) has affinity to all Y receptors, while PYY (3–36)
binds with highest affinity to the hypothalamic Y2 receptor,
suppressing food intake. Circulating PYY concentrations
are low in fasted state and rise rapidly following a meal
with a peak at 1-2 hours and remain elevated for several
hours [31]. Ingestion of fat results in greater release of PYY
than observed with ingestion of carbohydrate or protein
meals with a similar calorie content [31]. Peripheral PYY
administration shows a decrease in food intake and body
weight gain in rats [32]. In both lean and obese humans,
intravenous injection of PYY reduces appetite and food
intake [32, 33], suggesting that, unlike leptin, the sensitivity
of PYY is preserved in obese subjects. PYY levels are found
to be elevated in patients with gastrointestinal disorders
including inflammatory bowel disease and steatorrhea [34,
35].

In addition to its effect on food intake, PYY may regulate
energy expenditure [36, 37], delay gastric emptying, and
reduce acid secretion [38, 39]. In obese subjects circulating
PYY levels are low [33, 40], and PYY levels are reported to

be higher in patients with anorexia nervosa when compared
with control subjects [41]. Studies of circulating levels of
PYY in obese and lean people have yielded conflicting results
[42, 43]. However a blunted postprandial rise in PYY is
observed in obese people, which suggests its association with
impaired satiety [39].

The anorectic effects of PYY (3–36) may be mediated
centrally via a direct action in the ARC, through an
indirect action involving the vagus and brainstem, or by a
combination of both pathways. Peripheral administration
of PYY (3–36) increases c-fos expression (a marker of
neuronal activation) in the ARC, and direct injection of
PYY (3–36) into the ARC inhibits food intake. This effect
is most likely mediated through the Y2 receptor since the
anorectic effect of peripheral PYY (3–36) administration is
blocked in Y2 receptor-null mice and intra-arcuate injec-
tion of a Y2 receptor selective agonist also reduces food
intake [32]. Although there have been conflicting results
[44], the importance of vagal-brainstem signalling to the
actions of PYY on food intake is suggested by observing
that bilateral subdiaphragmatic vagotomy and brainstem-
hypothalamic pathway transectioning abolish the anorectic
effect of peripheral PYY (3–36) administration in rats
[45, 46].

In contrast to peripheral and intra-arcuate PYY (3–36)
administration, PYY (3–36) results in an increase in food
intake when administered directly into the third ventricle of
the brain [47] or directly into the paraventricular nucleus
(PVN) [48]. This apparently confusing observation may be
explained by considering that such effects might be endoge-
nously mediated by the CNS-distributed peptide, NPY,
through an action on Y1 receptor and Y5 receptors [49].

PYY may also act in areas of the brain other than
the hypothalamus and brainstem. Batterham et al. [50]
suggested that PYY (3–36) infusion modulates neural activ-
ity within corticolimbic and higher cortical brain using
functional magnetic resonance imaging. Under conditions
of high circulating PYY (3–36) designed to mimic the
postprandial state, changes in neural activity within the cau-
dolateral orbital frontal cortex predicted subsequent feeding
behaviour. By contrast, hypothalamic activation correlated
with food intake under conditions of low circulating PYY (3–
36).

5.3. Pancreatic Polypeptide (PP). PP is secreted from PP cells
in the pancreatic islets of Langerhans. PP appears to reduce
food intake directly through the Y4 receptor in the brainstem
and hypothalamus. The anorectic effects of PP are abolished
by vagotomy in rodents, suggesting that PP may also act
via the vagus nerve to reduce food intake [51]. Y4 receptor
expression is found in the AP, NTS, DVN, ARC, and PVN
[52]. An autoradiography study also identified saturable
PP binding sites at the interpeduncular nucleus, AP, NTS,
and DVN [53], thus suggesting the brainstem as the major
site of action for PP. Like PYY, differential effects on food
intake are observed following PP injection, depending on the
route of administration. In contrast to the anorectic effects
observed with peripheral PP administration, its central
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administration stimulates food intake [54]. These differential
effects may be explained by activation of distinct receptor
populations, although the exact mechanism is not yet
clear.

Circulating PP concentrations rise after a meal in propor-
tion to the calorific load. Although reported differences in
circulating levels of PP between lean and obese people have
been conflicting [55, 56], some studies have demonstrated
significantly reduced levels in obese subjects [57, 58]. Levels
of PP are elevated after a test meal in anorexia [59]. Patients
with Prader-Willi syndrome (PWS) have been reported to
show reduced PP release both basally and postprandially
when compared with age- and weight-matched control
subjects [60].

The anorectic effects of PP have been demonstrated in a
number of experimental models. In mice, acute and chronic
peripheral administration of PP reduces food intake [47,
57]. In leptin-deficient ob/ob mice, repeated intraperitoneal
injection of PP decreases body weight gain and ameliorates
insulin resistance and hyperlipidaemia [51]. Furthermore,
transgenic mice overexpressing PP are lean and demonstrate
reduced food intake compared with wild-type controls [61].
In normal-weight human subjects, intravenous infusion of
PP results in a 25% reduction in 24-h food intake [62].
Furthermore twice-daily infusion of PP in volunteers with
PWS caused a 12% reduction in food intake [63].

5.4. Proglucagon-Derived Peptides. GLP-1, GLP-2, oxynto-
modulin (OXM), and glucagon are proglucagon-derived
peptides. Proglucagon is expressed in the pancreas, L-cells of
the small intestine, and in the NTS of the brainstem [64, 65].
Glucagon is produced in the pancreas, whereas OXM, GLP-1,
and GLP-2 are the major products in the brain and intestine
[66].

5.5. Glucagon-Like Peptide-1. GLP-1 is cosecreted with PYY
from L cells in the intestine in response to nutrient
intake. Enzymatic degradation by DPPIV and renal clear-
ance rapidly inactivate and remove GLP-1 from plasma
circulation, respectively [67, 68], thus accounting for its
short plasma half-life of 1-2 minutes [69]. GLP-1 has two
biologically active forms, GLP-1 (7–37) and GLP-1 (7–36)
amide, the latter being the major circulating form in humans
[70]. GLP-1 exerts its effect at the GLP-1R to stimulate
adenylyl cyclase activity and thereby cAMP production [71].
GLP-1R is widely distributed particularly in the brain, GI
tract, and pancreas [71, 72]. Circulating GLP-1 levels rise
after a meal and fall in the fasted state. Recent evidence
also suggests that levels rise in anticipation of a meal [73].
GLP-1 reduces food intake, suppresses glucagon secretion,
and delays gastric emptying [74]. Intravenous infusion of
GLP-1 results in a dose-dependent reduction of food intake
in both normal weight and obese subjects [75]; however
obese subjects have a blunted postprandial GLP-1 response
compared to lean subjects [71].

GLP-1 possesses a potent incretin effect in addition to its
anorectic action; it stimulates insulin secretion in a glucose-
dependent manner following ingestion of carbohydrate.

Continuous subcutaneous infusion of GLP-1 to patients
with type 2 diabetes for 6 weeks reduces appetite, body
weight and improves glycaemic control [76]. Exendin-
4, a naturally occurring peptide from the saliva of the
Gila monster lizard, is a DPPIV-resistant GLP-1R agonist
[77]. Exendin-4 (exenatide, Byetta) has been approved for
type 2 diabetes in conjunction with either metformin, a
sulphonylurea, or both drugs. Twice-daily subcutaneous
injection of exendin-4 to type 2 diabetes patients failing to
achieve glycaemic control with maximal doses of metformin
improves glycaemic control and decreases body weight
[78]. Once-weekly subcutaneous injection of a long-acting
exenatide preparation and once-daily subcutaneous injec-
tion of the GLP-1 analogue called liraglutide demonstrate
greater improvements in glycaemic control than twice-daily
exenatide administration [79, 80].

GLP-1 possesses trophic effects on pancreatic beta cells
in animal models [81]. Most recently, GLP-1 and exendin-
4 have been shown to promote cellular growth and reduce
apoptosis in nervous tissues [82]. GLP-1 receptor stimulation
has been shown to have neuroprotective effect in models
of Parkinson’s disease [83–85], Alzheimer’s disease [86, 87],
cerebrovascular stroke [85], and peripheral neuropathy [88].
Further work is needed to determine if GLP-1 analogues
could be potential novel therapies for patients with these
neurological and neurodegenerative diseases.

5.6. Glucagon-Like Peptide-2. GLP-2 is released from
enteroendocrine cells in a nutrient-dependent manner, like
GLP-1. Acute or chronic administration with GLP-2 has no
effect on food intake in either rodents or humans [89, 90].
However, GLP-2 has an intestinal trophic effect [91, 92], and
chronic subcutaneous administration of GLP-2 stimulates
crypt cell proliferation. As such, GLP-2 analogues have been
developed for use in patients with inflammatory bowel
disease [93]. In addition, some studies have demonstrated a
reduction in gastric emptying in humans by GLP-2, although
the effect is not as potent as GLP-1 [94].

5.7. Oxyntomodulin. OXM is another product of the
proglucagon gene and is released from L-cells of the intestine
in response to ingested food and in proportion to caloric
intake [95]. Administration of OXM reduces food intake and
increases energy expenditure in both rodents and humans
[96–98]. The anorectic effect of OXM is blocked by the GLP-
1R antagonist exendin 9–39 [99] and is abolished in GLP-
1R null mice [100]; this suggests that OXM mediates its
effects via the GLP-1R. However OXM has relatively low in
vitro affinity for the GLP-1R which is 50 fold lower than the
affinity of GLP-1 for GLP1R. This raises the possibility that a
further receptor through which OXM mediates its anorectic
effect has yet to be identified. Indeed, several actions of OXM
appear to be independent of the GLP-1R [97, 101, 102]. For
example, the cardiovascular effects of OXM are preserved
in GLP-1R knockout mice [101]. Like GLP-1, OXM is
inactivated by DPPIV; hence OXM analogues resistant to
DPPIV degradation are being developed as potential obesity
treatments [103].
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5.8. Ghrelin. Ghrelin is the only known orexigenic gut
hormone and was identified as an endogenous ligand for
the growth hormone secretagogue receptor (GHS-R) in rat
stomach [104]. Lower levels of ghrelin are also localized
to the hypothalamic ARC. Levels of circulating ghrelin
increase preprandially and fall rapidly in the postprandial
period [105]. Both central and peripheral administrations
of ghrelin increase food intake and body weight with a
reduction in fat utilisation in rodents [106, 107]. In human,
negative correlations between circulating ghrelin levels and
body mass index are found. Fasting plasma levels of ghrelin
are high in patients with anorexia nervosa [108] and in
subjects with diet-induced weight loss [19]. By contrast,
obese subjects display a less marked drop in plasma ghrelin
after meal injection [109]. Plasma ghrelin levels are elevated
in cachectic patients with heart failure as compared with
noncachectic patients with heart failure and control subjects
[110]. Furthermore elevated circulating ghrelin levels are
observed in patients with PWS compared with individuals
with nonsyndromic forms of obesity [111]. Dysregulation
of ghrelin secretion is also implicated in the mechanism
through which sleep disturbance contributes to obesity.
Subjects with short sleep duration have elevated ghrelin
levels, reduced leptin, and high body mass index compared
with subjects with normal sleep duration [112].

Evidence suggests that ghrelin mediates its orexigenic
action via stimulation of NPY/AgRP coexpressing neurons
within the ARC of hypothalamus. Peripheral administration
of ghrelin increases c-fos expression in ARC NPY/AgRP
neurons [113], and ablation of both AgRP and NPY neurons
completely abolishes the orexigenic effect of ghrelin [114].
Brainstem and vagus nerve may also contribute to the
effects of ghrelin on food intake. Intracerebroventricular
injection of ghrelin induces c-fos expression in NTS and AP
[115]. GHS-R is expressed in the vagus nerve. Furthermore
blockade of gastric vagal afferents in rats abolishes ghrelin-
induced feeding and prevents the ghrelin-induced rise in c-
fos expression within the ARC [116].

Ghrelin may promote food intake in part by enhancing
the hedonic responses to food cues. The recent study by
Malik et al. [117] using functional magnetic resonance
imaging during exposure to food pictures revealed increased
activation in the amygdala, orbitofrontal cortex, anterior
insula, and striatum, during intravenous infusion of ghrelin.
Furthermore the effects of ghrelin on the response of
amygdala and orbitofrontal cortex were correlated with self-
rated hunger ratings.

5.9. Cholecystokinin. CCK was the first gut hormone found
to play a role in food intake [118]. CCK is secreted post-
prandially by the I cell of the small intestine into circulation
[119], with a short plasma half-life of a few minutes. Plasma
CCK levels rise within 15 minutes after meals [119]. CCK
is reported to reduce food intake in human and rodents
[119, 120]. There are two CCK receptor subtypes; CCK1 and
CCK2 receptors, previously classified as CCK A and CCK B.
The anorectic action of CCK appears to be mostly mediated
via CCK1 receptors on the vagal nerve [121, 122]. CCK 1

and 2 receptors are widely distributed in brain including the
brainstem and hypothalamus [123]. Intermittent prandial
CCK infusion reduces meal size in rats but provokes a
compensatory increase in meal frequency [124]. In addition,
a 2-week continuous intraperitoneal infusion of CCK failed
to suppress food intake at any time point [125].

5.10. Peripheral Adiposity Signals: Insulin and Leptin. Adi-
posity signals are involved in the long-term regulation of
energy balance, while gut peptides modulate food intake on
a meal-by-meal basis. Circulating levels of insulin and leptin
are positively correlated with adipose tissue mass within
the body and are implicated in the long-term regulation
of energy balance. Insulin is synthesized in the β cells
of the pancreas and secreted rapidly after a meal, with
well-characterised hypoglycaemic effects [126]. However
intracerebroventricular administration of insulin also results
in a dose-dependent suppression of food intake and body
weight gain in baboons and rodents [127, 128]. Insulin
may therefore have an anorectic action in addition to
its hypoglycaemic effects. Leptin is secreted by adipocytes
with circulating levels proportional to fat mass [129] with
a diurnal and pulsatile pattern, peaking at night [130].
Leptin administration alleviates the hyperphagia associated
with congenital leptin deficiency. However obese subjects
are resistant to leptin, which may account for its lack of
effectiveness in such individuals [131, 132].

6. Conclusion

Obesity, the metabolic syndrome, and their associated risk
factors of cardiovascular disease and diabetes mellitus are
among the most important health issues facing modern
economies regardless of geographical location. Recent work
has revealed that energy homeostasis is maintained by
an array of complex pathways. The presence of multiple,
overlapping feeding mechanisms reflects the vital nature of
feeding behaviour for survival. However these homeostatic
feeding mechanisms may be viewed as maladaptive in
obese individuals exposed to diets with a high calorific
content. Several gut hormones are thought to play a role
in the sustained weight loss observed following bypass
surgery; hence mimicking bypass surgery by administration
of gut hormone-derived therapies could offer a promising
treatment for obesity. A further understanding of the
pathogenesis of obesity and the role of gut hormones in
appetite regulation is imperative.
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